; PROLOGUE(mpn_karasub) ; mpn_karasub ; ; Copyright 2011 The Code Cavern ; ; Copyright 2012 Brian Gladman ; ; This file is part of the MPIR Library. ; ; The MPIR Library is free software; you can redistribute it and/or modify ; it under the terms of the GNU Lesser General Public License as published ; by the Free Software Foundation; either version 2.1 of the License, or (at ; your option) any later version. ; ; The MPIR Library is distributed in the hope that it will be useful, but ; WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY ; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public ; License for more details. ; ; You should have received a copy of the GNU Lesser General Public License ; along with the MPIR Library; see the file COPYING.LIB. If not, write ; to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, ; Boston, MA 02110-1301, USA. ; ; void mpn_karasub(mp_ptr, mp_ptr, mp_size_t) ; rax rdi rsi rdx ; rax rcx rdx r8 ; ; Karasuba Multiplication - split x and y into two equal length halves so ; that x = xh.B + xl and y = yh.B + yl. Then their product is: ; ; x.y = xh.yh.B^2 + (xh.yl + xl.yh).B + xl.yl ; = xh.yh.B^2 + (xh.yh + xl.yl - {xh - xl}.{yh - yl}).B + xl.yl ; ; If the length of the elements is m (about n / 2), the output length is 4 * m ; as illustrated below. The middle two blocks involve three additions and one ; subtraction: ; ; -------------------- rp ; | |--> ; | A:xl.yl[lo] | | ; | | | (xh - xl).(yh - yl) ; -------------------- | -------------------- tp ; <-- | |<--< <-- | | ; | | B:xl.yl[hi] | | | E:[lo] | ; | | | | | | ; | -------------------- | -------------------- ; >--> | |--> <-- | | ; |\___ | C:xh.yh[lo] | ____/ | F:[hi] | ; | | | | | ; | -------------------- -------------------- ; <-- | | ; | D:xh.yh[hi] | ; | | ; -------------------- ; ; To avoid overwriting B before it is used, we need to do two operations ; in parallel: ; ; (1) B = B + C + A - E = (B + C) + A - E ; (2) C = C + B + D - F = (B + C) + D - F ; ; The final carry from (1) has to be propagated into C and D, and the final ; carry from (2) has to be propagated into D. When the number of input limbs ; is odd, some extra operations have to be undertaken. %include "yasm_mac.inc" %define reg_save_list rbx, rbp, rsi, rdi, r12, r13, r14, r15 %macro add_one 1 inc %1 %endmacro BITS 64 TEXT ; requires n >= 8 FRAME_PROC mpn_karasub, 2, reg_save_list mov rdi, rcx mov rsi, rdx mov rdx, r8 mov [rsp], rdx mov [rsp+8], rdi ; rp is rdi, tp is rsi, L is rdi, H is rbp, tp is rsi ; carries/borrows in rax, rbx shr rdx, 1 lea rcx, [rdx+rdx*1] lea rbp, [rdi+rcx*8] xor rax, rax xor rbx, rbx lea rdi, [rdi+rdx*8-24] lea rsi, [rsi+rdx*8-24] lea rbp, [rbp+rdx*8-24] mov ecx, 3 sub rcx, rdx mov edx, 3 align 16 .1: bt rbx, 2 mov r8, [rdi+rdx*8] adc r8, [rbp+rcx*8] mov r12, r8 mov r9, [rdi+rdx*8+8] adc r9, [rbp+rcx*8+8] mov r10, [rdi+rdx*8+16] adc r10, [rbp+rcx*8+16] mov r11, [rdi+rdx*8+24] adc r11, [rbp+rcx*8+24] adc rbx, rbx bt rax, 1 mov r15, r11 adc r8, [rdi+rcx*8] mov r13, r9 adc r9, [rdi+rcx*8+8] mov r14, r10 adc r10, [rdi+rcx*8+16] adc r11, [rdi+rcx*8+24] adc rax, rax bt rbx, 2 adc r12, [rbp+rdx*8] adc r13, [rbp+rdx*8+8] adc r14, [rbp+rdx*8+16] adc r15, [rbp+rdx*8+24] adc rbx, rbx bt rax, 1 sbb r8, [rsi+rcx*8] sbb r9, [rsi+rcx*8+8] sbb r10, [rsi+rcx*8+16] sbb r11, [rsi+rcx*8+24] mov [rdi+rdx*8+16], r10 mov [rdi+rdx*8+24], r11 adc rax, rax bt rbx, 2 mov [rdi+rdx*8], r8 mov [rdi+rdx*8+8], r9 sbb r12, [rsi+rdx*8] sbb r13, [rsi+rdx*8+8] sbb r14, [rsi+rdx*8+16] sbb r15, [rsi+rdx*8+24] adc rbx, rbx add rdx, 4 mov [rbp+rcx*8], r12 mov [rbp+rcx*8+8], r13 mov [rbp+rcx*8+16], r14 mov [rbp+rcx*8+24], r15 add rcx, 4 jnc .1 cmp rcx, 2 jg .5 jz .4 jp .3 .2: bt rbx, 2 mov r8, [rdi+rdx*8] adc r8, [rbp] mov r12, r8 mov r9, [rdi+rdx*8+8] adc r9, [rbp+8] mov r10, [rdi+rdx*8+16] adc r10, [rbp+16] adc rbx, rbx bt rax, 1 adc r8, [rdi] mov r13, r9 adc r9, [rdi+8] mov r14, r10 adc r10, [rdi+16] adc rax, rax bt rbx, 2 adc r12, [rbp+rdx*8] adc r13, [rbp+rdx*8+8] adc r14, [rbp+rdx*8+16] adc rbx, rbx bt rax, 1 sbb r8, [rsi] sbb r9, [rsi+8] sbb r10, [rsi+16] mov [rdi+rdx*8+16], r10 adc rax, rax bt rbx, 2 mov [rdi+rdx*8], r8 mov [rdi+rdx*8+8], r9 sbb r12, [rsi+rdx*8] sbb r13, [rsi+rdx*8+8] sbb r14, [rsi+rdx*8+16] adc rbx, rbx add rdx, 3 mov [rbp], r12 mov [rbp+8], r13 mov [rbp+16], r14 jmp .5 .3: bt rbx, 2 mov r8, [rdi+rdx*8] adc r8, [rbp+8] mov r12, r8 mov r9, [rdi+rdx*8+8] adc r9, [rbp+16] adc rbx, rbx bt rax, 1 adc r8, [rdi+8] mov r13, r9 adc r9, [rdi+16] adc rax, rax bt rbx, 2 adc r12, [rbp+rdx*8] adc r13, [rbp+rdx*8+8] adc rbx, rbx bt rax, 1 sbb r8, [rsi+8] sbb r9, [rsi+16] adc rax, rax bt rbx, 2 mov [rdi+rdx*8], r8 mov [rdi+rdx*8+8], r9 sbb r12, [rsi+rdx*8] sbb r13, [rsi+rdx*8+8] adc rbx, rbx add rdx, 2 mov [rbp+8], r12 mov [rbp+16], r13 jmp .5 .4: bt rbx, 2 mov r8, [rdi+rdx*8] adc r8, [rbp+16] mov r12, r8 adc rbx, rbx bt rax, 1 adc r8, [rdi+16] adc rax, rax bt rbx, 2 adc r12, [rbp+rdx*8] adc rbx, rbx bt rax, 1 sbb r8, [rsi+16] adc rax, rax bt rbx, 2 mov [rdi+rdx*8], r8 sbb r12, [rsi+rdx*8] adc rbx, rbx add_one rdx mov [rbp+rcx*8], r12 ; move low half rbx carry into rax .5: rcr rax, 3 bt rbx, 2 rcl rax, 3 mov r8, [rsp] mov rcx, rsi mov rsi,[rsp+8] lea r9, [r8+r8] lea rsi, [rsi+r9*8] lea r11, [rbp+24] sub r11, rsi sar r11, 3 bt r8, 0 jnc .9 ; if odd the do next two add r11, 2 mov r8, [rbp+rdx*8] mov r9, [rbp+rdx*8+8] rcr rbx, 2 adc r8,0 adc r9, 0 adc rbx, rbx sbb r8, [rcx+rdx*8] sbb r9, [rcx+rdx*8+8] rcr rbx, 2 adc [rbp+24], r8 adc [rbp+32], r9 rcl rbx, 3 ; Now add in any accummulated carries and/or borrows ; ; NOTE: We can't propagate individual borrows or carries from the second ; and third quarter blocks into the fourth quater block by simply waiting ; for carry (or borrow) propagation to end. This is because a carry into ; the fourth quarter block when it contains only maximum integers or a ; borrow when it contains all zero integers will incorrectly propagate ; beyond the end of the top quarter block. .9: lea rdx, [rdi+rdx*8] sub rdx, rsi sar rdx, 3 ; carries/borrrow from second to third quarter quarter block ; rax{2} is the carry in (B + C) ; rax{1} is the carry in (B + C) + A ; rax{0} is the borrow in (B + C + A) - E mov rcx, rdx bt rax, 0 .10: sbb qword[rsi+rcx*8], 0 add_one rcx jrcxz .11 jc .10 .11 mov rcx, rdx bt rax, 1 .12: adc qword[rsi+rcx*8], 0 add_one rcx jrcxz .13 jc .12 .13 mov rcx, rdx bt rax, 2 .14: adc qword[rsi+rcx*8], 0 add_one rcx jrcxz .15 jc .14 ; carries/borrrow from third to fourth quarter quarter block ; rbx{2} is the carry in (B + C) ; rbx{1} is the carry in (B + C) + D ; rbx{0} is the borrow in (B + C + D) - F .15: mov rcx, r11 bt rbx, 0 .16: sbb qword[rsi+rcx*8], 0 add_one rcx jrcxz .17 jc .16 .17: mov rcx, r11 bt rbx, 1 .18: adc qword[rsi+rcx*8], 0 add_one rcx jrcxz .19 jc .18 .19: mov rcx, r11 bt rbx, 2 .20: adc qword[rsi+rcx*8], 0 add_one rcx jrcxz .21 jc .20 .21: END_PROC reg_save_list end