/* mpn_tdiv_qr -- Divide the numerator (np,nn) by the denominator (dp,dn) and write the nn-dn+1 quotient limbs at qp and the dn remainder limbs at rp. If qxn is non-zero, generate that many fraction limbs and append them after the other quotient limbs, and update the remainder accordningly. The input operands are unaffected. Preconditions: 1. The most significant limb of of the divisor must be non-zero. 2. No argument overlap is permitted. (??? relax this ???) 3. nn >= dn, even if qxn is non-zero. (??? relax this ???) The time complexity of this is O(qn*qn+M(dn,qn)), where M(m,n) is the time complexity of multiplication. Copyright 1997, 2000, 2001, 2002, 2005 Free Software Foundation, Inc. This file is part of the GNU MP Library. The GNU MP Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU MP Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MP Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "mpir.h" #include "gmp-impl.h" #include "longlong.h" void mpn_tdiv_qr (mp_ptr qp, mp_ptr rp, mp_size_t qxn, mp_srcptr np, mp_size_t nn, mp_srcptr dp, mp_size_t dn) { /* FIXME: 1. qxn 2. pass allocated storage in additional parameter? */ ASSERT_ALWAYS (qxn == 0); ASSERT (qxn >= 0); ASSERT (nn >= 0); ASSERT (dn >= 0); ASSERT (dn == 0 || dp[dn - 1] != 0); ASSERT (! MPN_OVERLAP_P (qp, nn - dn + 1 + qxn, np, nn)); ASSERT (! MPN_OVERLAP_P (qp, nn - dn + 1 + qxn, dp, dn)); switch (dn) { case 0: DIVIDE_BY_ZERO; case 1: { rp[0] = mpn_divmod_1 (qp, np, nn, dp[0]); return; } case 2: { mp_ptr n2p, d2p; mp_limb_t qhl, cy; TMP_DECL; TMP_MARK; if ((dp[1] & GMP_NUMB_HIGHBIT) == 0) { int cnt; mp_limb_t dtmp[2]; count_leading_zeros (cnt, dp[1]); cnt -= GMP_NAIL_BITS; d2p = dtmp; d2p[1] = (dp[1] << cnt) | (dp[0] >> (GMP_NUMB_BITS - cnt)); d2p[0] = (dp[0] << cnt) & GMP_NUMB_MASK; n2p = (mp_ptr) TMP_ALLOC ((nn + 1) * BYTES_PER_MP_LIMB); cy = mpn_lshift (n2p, np, nn, cnt); n2p[nn] = cy; qhl = mpn_divrem_2 (qp, 0L, n2p, nn + (cy != 0), d2p); if (cy == 0) qp[nn - 2] = qhl; /* always store nn-2+1 quotient limbs */ rp[0] = (n2p[0] >> cnt) | ((n2p[1] << (GMP_NUMB_BITS - cnt)) & GMP_NUMB_MASK); rp[1] = (n2p[1] >> cnt); } else { d2p = (mp_ptr) dp; n2p = (mp_ptr) TMP_ALLOC (nn * BYTES_PER_MP_LIMB); MPN_COPY (n2p, np, nn); qhl = mpn_divrem_2 (qp, 0L, n2p, nn, d2p); qp[nn - 2] = qhl; /* always store nn-2+1 quotient limbs */ rp[0] = n2p[0]; rp[1] = n2p[1]; } TMP_FREE; return; } default: { int adjust; TMP_DECL; TMP_MARK; adjust = np[nn - 1] >= dp[dn - 1]; /* conservative tests for quotient size */ if (nn + adjust >= 2 * dn) { mp_ptr n2p, d2p, q2p; mp_limb_t cy; int cnt; qp[nn - dn] = 0; /* zero high quotient limb */ if ((dp[dn - 1] & GMP_NUMB_HIGHBIT) == 0) /* normalize divisor */ { count_leading_zeros (cnt, dp[dn - 1]); cnt -= GMP_NAIL_BITS; d2p = (mp_ptr) TMP_ALLOC (dn * BYTES_PER_MP_LIMB); mpn_lshift (d2p, dp, dn, cnt); n2p = (mp_ptr) TMP_ALLOC ((nn + 1) * BYTES_PER_MP_LIMB); cy = mpn_lshift (n2p, np, nn, cnt); n2p[nn] = cy; nn += adjust; } else { cnt = 0; d2p = (mp_ptr) dp; n2p = (mp_ptr) TMP_ALLOC ((nn + 1) * BYTES_PER_MP_LIMB); MPN_COPY (n2p, np, nn); n2p[nn] = 0; nn += adjust; } if (dn < DIV_DC_THRESHOLD) mpn_sb_divrem_mn (qp, n2p, nn, d2p, dn); else { /* Divide 2*dn / dn limbs as long as the limbs in np last. */ q2p = qp + nn - dn; n2p += nn - dn; do { q2p -= dn; n2p -= dn; mpn_dc_divrem_n (q2p, n2p, d2p, dn); nn -= dn; } while (nn >= 2 * dn); if (nn != dn) { mp_limb_t ql; n2p -= nn - dn; /* We have now dn < nn - dn < 2dn. Make a recursive call, since falling out to the code below isn't pretty. Unfortunately, mpn_tdiv_qr returns nn-dn+1 quotient limbs, which would overwrite one already generated quotient limbs. Preserve it with an ugly hack. */ /* FIXME: This suggests that we should have an mpn_tdiv_qr_internal that instead returns the most significant quotient limb and move the meat of this function there. */ /* FIXME: Perhaps call mpn_sb_divrem_mn here for certain operand ranges, to decrease overhead for small operands? */ ql = qp[nn - dn]; /* preserve quotient limb... */ mpn_tdiv_qr (qp, n2p, 0L, n2p, nn, d2p, dn); qp[nn - dn] = ql; /* ...restore it again */ } } if (cnt != 0) mpn_rshift (rp, n2p, dn, cnt); else MPN_COPY (rp, n2p, dn); TMP_FREE; return; } /* When we come here, the numerator/partial remainder is less than twice the size of the denominator. */ { /* Problem: Divide a numerator N with nn limbs by a denominator D with dn limbs forming a quotient of qn=nn-dn+1 limbs. When qn is small compared to dn, conventional division algorithms perform poorly. We want an algorithm that has an expected running time that is dependent only on qn. Algorithm (very informally stated): 1) Divide the 2 x qn most significant limbs from the numerator by the qn most significant limbs from the denominator. Call the result qest. This is either the correct quotient, but might be 1 or 2 too large. Compute the remainder from the division. (This step is implemented by a mpn_divrem call.) 2) Is the most significant limb from the remainder < p, where p is the product of the most significant limb from the quotient and the next(d)? (Next(d) denotes the next ignored limb from the denominator.) If it is, decrement qest, and adjust the remainder accordingly. 3) Is the remainder >= qest? If it is, qest is the desired quotient. The algorithm terminates. 4) Subtract qest x next(d) from the remainder. If there is borrow out, decrement qest, and adjust the remainder accordingly. 5) Skip one word from the denominator (i.e., let next(d) denote the next less significant limb. */ mp_size_t qn; mp_ptr n2p, d2p; mp_ptr tp; mp_limb_t cy; mp_size_t in, rn; mp_limb_t quotient_too_large; unsigned int cnt; qn = nn - dn; qp[qn] = 0; /* zero high quotient limb */ qn += adjust; /* qn cannot become bigger */ if (qn == 0) { MPN_COPY (rp, np, dn); TMP_FREE; return; } in = dn - qn; /* (at least partially) ignored # of limbs in ops */ /* Normalize denominator by shifting it to the left such that its most significant bit is set. Then shift the numerator the same amount, to mathematically preserve quotient. */ if ((dp[dn - 1] & GMP_NUMB_HIGHBIT) == 0) { count_leading_zeros (cnt, dp[dn - 1]); cnt -= GMP_NAIL_BITS; d2p = (mp_ptr) TMP_ALLOC (qn * BYTES_PER_MP_LIMB); mpn_lshift (d2p, dp + in, qn, cnt); d2p[0] |= dp[in - 1] >> (GMP_NUMB_BITS - cnt); n2p = (mp_ptr) TMP_ALLOC ((2 * qn + 1) * BYTES_PER_MP_LIMB); cy = mpn_lshift (n2p, np + nn - 2 * qn, 2 * qn, cnt); if (adjust) { n2p[2 * qn] = cy; n2p++; } else { n2p[0] |= np[nn - 2 * qn - 1] >> (GMP_NUMB_BITS - cnt); } } else { cnt = 0; d2p = (mp_ptr) dp + in; n2p = (mp_ptr) TMP_ALLOC ((2 * qn + 1) * BYTES_PER_MP_LIMB); MPN_COPY (n2p, np + nn - 2 * qn, 2 * qn); if (adjust) { n2p[2 * qn] = 0; n2p++; } } /* Get an approximate quotient using the extracted operands. */ if (qn == 1) { mp_limb_t q0, r0; mp_limb_t gcc272bug_n1, gcc272bug_n0, gcc272bug_d0; /* Due to a gcc 2.7.2.3 reload pass bug, we have to use some temps here. This doesn't hurt code quality on any machines so we do it unconditionally. */ gcc272bug_n1 = n2p[1]; gcc272bug_n0 = n2p[0]; gcc272bug_d0 = d2p[0]; udiv_qrnnd (q0, r0, gcc272bug_n1, gcc272bug_n0 << GMP_NAIL_BITS, gcc272bug_d0 << GMP_NAIL_BITS); r0 >>= GMP_NAIL_BITS; n2p[0] = r0; qp[0] = q0; } else if (qn == 2) mpn_divrem_2 (qp, 0L, n2p, 4L, d2p); else if (qn < DIV_DC_THRESHOLD) mpn_sb_divrem_mn (qp, n2p, 2 * qn, d2p, qn); else mpn_dc_divrem_n (qp, n2p, d2p, qn); rn = qn; /* Multiply the first ignored divisor limb by the most significant quotient limb. If that product is > the partial remainder's most significant limb, we know the quotient is too large. This test quickly catches most cases where the quotient is too large; it catches all cases where the quotient is 2 too large. */ { mp_limb_t dl, x; mp_limb_t h, dummy; if (in - 2 < 0) dl = 0; else dl = dp[in - 2]; #if GMP_NAIL_BITS == 0 x = (dp[in - 1] << cnt) | ((dl >> 1) >> ((~cnt) % BITS_PER_MP_LIMB)); #else x = (dp[in - 1] << cnt) & GMP_NUMB_MASK; if (cnt != 0) x |= dl >> (GMP_NUMB_BITS - cnt); #endif umul_ppmm (h, dummy, x, qp[qn - 1] << GMP_NAIL_BITS); if (n2p[qn - 1] < h) { mp_limb_t cy; mpn_decr_u (qp, (mp_limb_t) 1); cy = mpn_add_n (n2p, n2p, d2p, qn); if (cy) { /* The partial remainder is safely large. */ n2p[qn] = cy; ++rn; } } } quotient_too_large = 0; if (cnt != 0) { mp_limb_t cy1, cy2; /* Append partially used numerator limb to partial remainder. */ cy1 = mpn_lshift (n2p, n2p, rn, GMP_NUMB_BITS - cnt); n2p[0] |= np[in - 1] & (GMP_NUMB_MASK >> cnt); /* Update partial remainder with partially used divisor limb. */ cy2 = mpn_submul_1 (n2p, qp, qn, dp[in - 1] & (GMP_NUMB_MASK >> cnt)); if (qn != rn) { ASSERT_ALWAYS (n2p[qn] >= cy2); n2p[qn] -= cy2; } else { n2p[qn] = cy1 - cy2; /* & GMP_NUMB_MASK; */ quotient_too_large = (cy1 < cy2); ++rn; } --in; } /* True: partial remainder now is neutral, i.e., it is not shifted up. */ tp = (mp_ptr) TMP_ALLOC (dn * BYTES_PER_MP_LIMB); if (in < qn) { if (in == 0) { MPN_COPY (rp, n2p, rn); ASSERT_ALWAYS (rn == dn); goto foo; } mpn_mul (tp, qp, qn, dp, in); } else mpn_mul (tp, dp, in, qp, qn); cy = mpn_sub (n2p, n2p, rn, tp + in, qn); MPN_COPY (rp + in, n2p, dn - in); quotient_too_large |= cy; cy = mpn_sub_n (rp, np, tp, in); cy = mpn_sub_1 (rp + in, rp + in, rn, cy); quotient_too_large |= cy; foo: if (quotient_too_large) { mpn_decr_u (qp, (mp_limb_t) 1); mpn_add_n (rp, rp, dp, dn); } } TMP_FREE; return; } } }