/* mpn_mul_n and helper function -- Multiply/square natural numbers. THE HELPER FUNCTIONS IN THIS FILE (meaning everything except mpn_mul_n) ARE INTERNAL FUNCTIONS WITH MUTABLE INTERFACES. IT IS ONLY SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST GUARANTEED THAT THEY'LL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE. Copyright 1991, 1993, 1994, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2005, Free Software Foundation, Inc. Copyright 2009 Jason Moxham This file is part of the GNU MP Library. The GNU MP Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU MP Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MP Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "mpir.h" #include "gmp-impl.h" #include "longlong.h" /* Multiplies using 3 half-sized mults and so on recursively. * p[0..2*n-1] := product of a[0..n-1] and b[0..n-1]. * No overlap of p[...] with a[...] or b[...]. * ws is workspace. */ void mpn_kara_mul_n (mp_ptr p, mp_srcptr a, mp_srcptr b, mp_size_t n, mp_ptr ws) { mp_limb_t w, w0, w1,c; mp_size_t n2; mp_srcptr x, y; mp_size_t i; int sign, ci; n2 = n >> 1; ASSERT (n2 > 0); if ((n & 1) != 0) { /* Odd length. */ mp_size_t n1, n3, nm1; n3 = n - n2; sign = 0; w = a[n2]; if (w != 0) w -= mpn_sub_n (p, a, a + n3, n2); else { i = n2; do { --i; w0 = a[i]; w1 = a[n3 + i]; } while (w0 == w1 && i != 0); if (w0 < w1) { x = a + n3; y = a; sign = ~0; } else { x = a; y = a + n3; } mpn_sub_n (p, x, y, n2); } p[n2] = w; w = b[n2]; if (w != 0) w -= mpn_sub_n (p + n3, b, b + n3, n2); else { i = n2; do { --i; w0 = b[i]; w1 = b[n3 + i]; } while (w0 == w1 && i != 0); if (w0 < w1) { x = b + n3; y = b; sign = ~sign; } else { x = b; y = b + n3; } mpn_sub_n (p + n3, x, y, n2); } p[n] = w; n1 = n + 1; if (n2 < MUL_KARATSUBA_THRESHOLD) { if (n3 < MUL_KARATSUBA_THRESHOLD) { mpn_mul_basecase (ws, p, n3, p + n3, n3); mpn_mul_basecase (p, a, n3, b, n3); } else { mpn_kara_mul_n (ws, p, p + n3, n3, ws + n1); mpn_kara_mul_n (p, a, b, n3, ws + n1); } mpn_mul_basecase (p + n1, a + n3, n2, b + n3, n2); } else { mpn_kara_mul_n (ws, p, p + n3, n3, ws + n1); mpn_kara_mul_n (p, a, b, n3, ws + n1); mpn_kara_mul_n (p + n1, a + n3, b + n3, n2, ws + n1); } nm1 = n - 1; if (sign) { #if HAVE_NATIVE_mpn_addadd_n c=mpn_addadd_n(ws,p+n1,p,ws,nm1); #if GMP_NAIL_BITS==0 add_ssaaaa(ws[n],ws[nm1],ws[n],ws[nm1],p[n],p[nm1]); add_ssaaaa(ws[n],ws[nm1],ws[n],ws[nm1],0,c); #else mpn_add_n(ws+nm1, p+nm1, ws+nm1 ,2); mpn_add_1(ws+nm1,ws+nm1,2,c); #endif #else mpn_add_n (ws, p, ws, n1); c=mpn_add_n (ws, p + n1, ws, nm1); if(c){mp_limb_t x=(ws[nm1]+1) & GMP_NUMB_MASK;ws[nm1]=x;if(x==0)ws[n]=(ws[n]+1) & GMP_NUMB_MASK;} #endif } else { #if HAVE_NATIVE_mpn_addsub_n ci=mpn_addsub_n(ws,p+n1,p,ws,nm1); #if GMP_NAIL_BITS==0 sub_ddmmss(ws[n],ws[nm1],p[n],p[nm1],ws[n],ws[nm1]);//mpn_sub_n(ws+nm1,p+nm1,ws+nm1,2); if(ci==-1)sub_ddmmss(ws[n],ws[nm1],ws[n],ws[nm1],0,1);//mpn_sub_1(ws+nm1,ws+nm1,2,1); if(ci== 1)add_ssaaaa(ws[n],ws[nm1],ws[n],ws[nm1],0,1);//mpn_add_1(ws+nm1,ws+nm1,2,1); #else mpn_sub_n(ws+nm1,p+nm1,ws+nm1,2); if(ci==-1)mpn_sub_1(ws+nm1,ws+nm1,2,1); if(ci== 1)mpn_add_1(ws+nm1,ws+nm1,2,1); #endif #else mpn_sub_n (ws, p, ws, n1); c=mpn_add_n (ws, p + n1, ws, nm1); if(c){mp_limb_t x=(ws[nm1]+1) & GMP_NUMB_MASK;ws[nm1]=x;if(x==0)ws[n]=(ws[n]+1) & GMP_NUMB_MASK;} #endif } if (mpn_add_n (p + n3, p + n3, ws, n1)) { mpn_incr_u (p + n1 + n3, 1); } } else { /* Even length. */ i = n2; do { --i; w0 = a[i]; w1 = a[n2 + i]; } while (w0 == w1 && i != 0); sign = 0; if (w0 < w1) { x = a + n2; y = a; sign = ~0; } else { x = a; y = a + n2; } mpn_sub_n (p, x, y, n2); i = n2; do { --i; w0 = b[i]; w1 = b[n2 + i]; } while (w0 == w1 && i != 0); if (w0 < w1) { x = b + n2; y = b; sign = ~sign; } else { x = b; y = b + n2; } mpn_sub_n (p + n2, x, y, n2); /* Pointwise products. */ if (n2 < MUL_KARATSUBA_THRESHOLD) { mpn_mul_basecase (ws, p, n2, p + n2, n2); mpn_mul_basecase (p, a, n2, b, n2); mpn_mul_basecase (p + n, a + n2, n2, b + n2, n2); } else { mpn_kara_mul_n (ws, p, p + n2, n2, ws + n); mpn_kara_mul_n (p, a, b, n2, ws + n); mpn_kara_mul_n (p + n, a + n2, b + n2, n2, ws + n); } /* Interpolate. */ if (sign) { #if HAVE_NATIVE_mpn_addadd_n w=mpn_addadd_n(ws,p+n,p,ws,n); #else w = mpn_add_n (ws, p, ws, n); w += mpn_add_n (ws, p + n, ws, n); #endif } else { #if HAVE_NATIVE_mpn_addsub_n w=mpn_addsub_n(ws,p+n,p,ws,n); #else w = -mpn_sub_n (ws, p, ws, n); w += mpn_add_n (ws, p + n, ws, n); #endif } w += mpn_add_n (p + n2, p + n2, ws, n); MPN_INCR_U (p + n2 + n, 2 * n - (n2 + n), w); } } void mpn_kara_sqr_n (mp_ptr p, mp_srcptr a, mp_size_t n, mp_ptr ws) { mp_limb_t w, w0, w1, c; int ci; mp_size_t n2; mp_srcptr x, y; mp_size_t i; n2 = n >> 1; ASSERT (n2 > 0); if ((n & 1) != 0) { /* Odd length. */ mp_size_t n1, n3, nm1; n3 = n - n2; w = a[n2]; if (w != 0) w -= mpn_sub_n (p, a, a + n3, n2); else { i = n2; do { --i; w0 = a[i]; w1 = a[n3 + i]; } while (w0 == w1 && i != 0); if (w0 < w1) { x = a + n3; y = a; } else { x = a; y = a + n3; } mpn_sub_n (p, x, y, n2); } p[n2] = w; n1 = n + 1; /* n2 is always either n3 or n3-1 so maybe the two sets of tests here could be combined. But that's not important, since the tests will take a miniscule amount of time compared to the function calls. */ if (BELOW_THRESHOLD (n3, SQR_BASECASE_THRESHOLD)) { mpn_mul_basecase (ws, p, n3, p, n3); mpn_mul_basecase (p, a, n3, a, n3); } else if (BELOW_THRESHOLD (n3, SQR_KARATSUBA_THRESHOLD)) { mpn_sqr_basecase (ws, p, n3); mpn_sqr_basecase (p, a, n3); } else { mpn_kara_sqr_n (ws, p, n3, ws + n1); /* (x-y)^2 */ mpn_kara_sqr_n (p, a, n3, ws + n1); /* x^2 */ } if (BELOW_THRESHOLD (n2, SQR_BASECASE_THRESHOLD)) mpn_mul_basecase (p + n1, a + n3, n2, a + n3, n2); else if (BELOW_THRESHOLD (n2, SQR_KARATSUBA_THRESHOLD)) mpn_sqr_basecase (p + n1, a + n3, n2); else mpn_kara_sqr_n (p + n1, a + n3, n2, ws + n1); /* y^2 */ /* Since x^2+y^2-(x-y)^2 = 2xy >= 0 there's no need to track the borrow from mpn_sub_n. If it occurs then it'll be cancelled by a carry from ws[n]. Further, since 2xy fits in n1 limbs there won't be any carry out of ws[n] other than cancelling that borrow. */ nm1=n-1; #if HAVE_NATIVE_mpn_addsub_n ci=mpn_addsub_n(ws,p+n1,p,ws,nm1); #if GMP_NAIL_BITS==0 sub_ddmmss(ws[n],ws[nm1],p[n],p[nm1],ws[n],ws[nm1]);//mpn_sub_n(ws+nm1,p+nm1,ws+nm1,2); if(ci==-1)sub_ddmmss(ws[n],ws[nm1],ws[n],ws[nm1],0,1);//mpn_sub_1(ws+nm1,ws+nm1,2,1); if(ci==1)add_ssaaaa(ws[n],ws[nm1],ws[n],ws[nm1],0,1);//mpn_add_1(ws+nm1,ws+nm1,2,1); #else mpn_sub_n(ws+nm1,p+nm1,ws+nm1,2); if(ci==-1)mpn_sub_1(ws+nm1,ws+nm1,2,1); if(ci==1)mpn_add_1(ws+nm1,ws+nm1,2,1); #endif #else mpn_sub_n (ws, p, ws, n1);/* x^2-(x-y)^2 */ c=mpn_add_n (ws, p + n1, ws, nm1);/* x^2+y^2-(x-y)^2 = 2xy */ if(c){mp_limb_t x = (ws[nm1] + 1) & GMP_NUMB_MASK;ws[nm1] = x; if (x == 0) ws[n] = (ws[n] + 1) & GMP_NUMB_MASK;} #endif if (mpn_add_n (p + n3, p + n3, ws, n1)) { mpn_incr_u (p + n1 + n3, 1); } } else { /* Even length. */ i = n2; do { --i; w0 = a[i]; w1 = a[n2 + i]; } while (w0 == w1 && i != 0); if (w0 < w1) { x = a + n2; y = a; } else { x = a; y = a + n2; } mpn_sub_n (p, x, y, n2); /* Pointwise products. */ if (BELOW_THRESHOLD (n2, SQR_BASECASE_THRESHOLD)) { mpn_mul_basecase (ws, p, n2, p, n2); mpn_mul_basecase (p, a, n2, a, n2); mpn_mul_basecase (p + n, a + n2, n2, a + n2, n2); } else if (BELOW_THRESHOLD (n2, SQR_KARATSUBA_THRESHOLD)) { mpn_sqr_basecase (ws, p, n2); mpn_sqr_basecase (p, a, n2); mpn_sqr_basecase (p + n, a + n2, n2); } else { mpn_kara_sqr_n (ws, p, n2, ws + n); mpn_kara_sqr_n (p, a, n2, ws + n); mpn_kara_sqr_n (p + n, a + n2, n2, ws + n); } /* Interpolate. */ #if HAVE_NATIVE_mpn_addsub_n w=mpn_addsub_n(ws,p+n,p,ws,n); #else w = -mpn_sub_n (ws, p, ws, n); w += mpn_add_n (ws, p + n, ws, n); #endif w += mpn_add_n (p + n2, p + n2, ws, n); MPN_INCR_U (p + n2 + n, 2 * n - (n2 + n), w); } } /****************************************************************************** * * * Toom 3-way multiplication and squaring * * * *****************************************************************************/ /* put in {c, 2n} where n = 2k+r the value of {v0,2k} (already in place) + B^k * [{v1, 2k+1} - {t1, 2k+1}] + B^(2k) * [{t2, 2k+1} - {v0+vinf, 2k}] + B^(3k) * [{t1, 2k+1} - {t2, 2k+1}] + B^(4k) * {vinf,2r} (high 2r-1 limbs already in place) where {t1, 2k+1} = (3*{v0,2k}+2*sa*{vm1,2k+1}+{v2,2k+1})/6-2*{vinf,2r} {t2, 2k+1} = ({v1, 2k+1} + sa * {vm1, 2k+1})/2 (sa is the sign of {vm1, 2k+1}). {vinf, 2r} stores the content of {v0, 2r} + {vinf, 2r}, with carry in cinf0. vinf0 is the low limb of vinf. ws is temporary space, and should have at least 2r limbs. Think about: The evaluated point a-b+c stands a good chance of having a zero carry limb, a+b+c would have a 1/4 chance, and 4*a+2*b+c a 1/8 chance, roughly. Perhaps this could be tested and stripped. Doing so before recursing would be better than stripping at the start of mpn_toom3_mul_n/sqr_n, since then the recursion could be based on the new size. Although in truth the kara vs toom3 crossover is never so exact that one limb either way makes a difference. A small value like 1 or 2 for the carry could perhaps also be handled with an add_n or addlsh1_n. Would that be faster than an extra limb on a (recursed) multiply/square? */ static void toom3_interpolate (mp_ptr c, mp_srcptr v1, mp_ptr v2, mp_ptr vm1, mp_ptr vinf, mp_size_t k, mp_size_t r, int sa, mp_limb_t vinf0, mp_limb_t cinf0, mp_ptr ws) { mp_limb_t cy, saved; unsigned long twok = k + k; unsigned long kk1 = twok + 1; unsigned long twor = r + r; mp_ptr c1, c2, c3, c4, c5; mp_limb_t cout; /* final carry, should be zero at the end */ c1 = c + k; c2 = c1 + k; c3 = c2 + k; c4 = c3 + k; c5 = c4 + k; #define v0 (c) /* {c,2k} {c+2k,2k+1} {c+4k+1,2r-1} {t,2k+1} {t+2k+1,2k+1} {t+4k+2,2r} v0 |vm1| hi(vinf) v1 v2+2vm1 vinf +lo(v0) */ ASSERT_NOCARRY (mpn_divexact_by3 (v2, v2, kk1)); /* v2 <- v2 / 3 */ #ifdef HAVE_NATIVE_mpn_rsh1add_n mpn_rsh1add_n (v2, v2, v0, twok); /* v2 <- (lo(v2)+v0) / 2, exact */ cy = v2[twok] & 1; /* add high limb of v2 divided by 2 */ v2[twok] >>= 1; MPN_INCR_U (v2 + twok - 1, 2, cy << (GMP_NUMB_BITS - 1)); #else v2[twok] += mpn_add_n (v2, v2, v0, twok); mpn_rshift1 (v2, v2, kk1); #endif /* {c,2k} {c+2k,2k+1} {c+4k+1,2r-1} {t,2k+1} {t+2k+1,2k+1} {t+4k+2,2r} v0 |vm1| hi(vinf) v1 (3v0+2vm1+v2) vinf /6 +lo(v0) */ /* vm1 <- t2 := (v1 + sa*vm1) / 2 t2 = a0*b0+a0*b2+a1*b1+a2*b0+a2*b2 >= 0 No carry comes out from {v1, kk1} +/- {vm1, kk1}, and the division by two is exact */ if (sa >= 0) { #ifdef HAVE_NATIVE_mpn_rsh1add_n mpn_rsh1add_n (vm1, v1, vm1, kk1); #else mpn_add_n (vm1, vm1, v1, kk1); mpn_rshift1 (vm1, vm1, kk1); #endif } else { #ifdef HAVE_NATIVE_mpn_rsh1sub_n mpn_rsh1sub_n (vm1, v1, vm1, kk1); #else mpn_sub_n (vm1, v1, vm1, kk1); mpn_rshift1 (vm1, vm1, kk1); #endif } /* {c,2k} {c+2k,2k+1} {c+4k+1,2r-1} {t,2k+1} {t+2k+1,2k+1} {t+4k+2,2r} v0 t2 hi(vinf) v1 t1 vinf+lo(v0) */ /* subtract 2*vinf to v2, result is t1 := a0*b0+a0*b2+a1*b1+a1*b2+a2*b0+a2*b1+a2*b2 >= 0 */ saved = c4[0]; c4[0] = vinf0; #ifdef HAVE_NATIVE_mpn_sublsh1_n cy = mpn_sublsh1_n (v2, v2, c4, twor); #else cy = mpn_lshift1 (ws, c4, twor); cy += mpn_sub_n (v2, v2, ws, twor); #endif MPN_DECR_U (v2 + twor, kk1 - twor, cy); c4[0] = saved; /* subtract {t2, 2k+1} in {c+3k, 2k+1} i.e. in {t2+k, 2k+1}: by chunks of k limbs from right to left to avoid overlap */ #define t2 (vm1) /* a borrow may occur in one of the 2 following __GMPN_SUB_1 calls, but since the final result is nonnegative, it will be compensated later on */ __GMPN_SUB_1 (cout, c5, c5, twor - k, t2[twok]); cy = mpn_sub_n (c4, c4, t2 + k, k); __GMPN_SUB_1 (cout, c5, c5, twor - k, cy); cy = mpn_sub_n (c3, c3, t2, k); __GMPN_SUB_1 (cout, c4, c4, twor, cy); /* don't forget to add vinf0 in {c+4k, ...} */ __GMPN_ADD_1 (cout, c4, c4, twor, vinf0); /* c c+k c+2k c+3k c+4k+1 t t+2k+1 t+4k+2 v0 t2 hi(vinf) v1 t1 vinf -t2 +lo(v0) */ /* c c+k c+2k c+3k c+4k t t+2k+1 t+4k+2 v0 t2 vinf v1 t1 vinf -t2 +lo(v0) */ /* subtract v0+vinf in {c+2k, ...} */ cy = cinf0 + mpn_sub_n (c2, c2, vinf, twor); if (twor < twok) { __GMPN_SUB_1 (cy, c2 + twor, c2 + twor, twok - twor, cy); cy += mpn_sub_n (c2 + twor, c2 + twor, v0 + twor, twok - twor); } __GMPN_SUB_1 (cout, c4, c4, twor, cy); /* 2n-4k = 2r */ /* c c+k c+2k c+3k c+4k t t+2k+1 t+4k+2 v0 t2 vinf v1 t1 vinf -v0 -t2 +lo(v0) -vinf */ /* subtract t1 in {c+k, ...} */ cy = mpn_sub_n (c1, c1, v2, kk1); __GMPN_SUB_1 (cout, c3 + 1, c3 + 1, twor + k - 1, cy); /* 2n-(3k+1)=k+2r-1 */ /* c c+k c+2k c+3k c+4k t t+2k+1 t+4k+2 v0 t2 vinf v1 t1 vinf -t1 -v0 -t2 -vinf */ /* add t1 in {c+3k, ...} */ cy = mpn_add_n (c3, c3, v2, kk1); __GMPN_ADD_1 (cout, c5 + 1, c5 + 1, twor - k - 1, cy); /* 2n-(5k+1) = 2r-k-1 */ /* c c+k c+2k c+3k c+4k t t+2k+1 t+4k+2 v0 t2 t1 vinf v1 t1 vinf -t1 -v0 -t2 -vinf */ /* add v1 in {c+k, ...} */ cy = mpn_add_n (c1, c1, v1, kk1); __GMPN_ADD_1 (cout, c3 + 1, c3 + 1, twor + k - 1, cy); /* 2n-(3k+1) = 2r+k-1 */ /* c c+k c+2k c+3k c+4k t t+2k+1 t+4k+2 v0 v1 t2 t1 vinf v1 t1 vinf -t1 -v0 -t2 -vinf */ #undef v0 #undef t2 } #define TOOM3_MUL_REC(p, a, b, n, ws) \ do { \ if (MUL_TOOM3_THRESHOLD / 3 < MUL_KARATSUBA_THRESHOLD \ && BELOW_THRESHOLD (n, MUL_KARATSUBA_THRESHOLD)) \ mpn_mul_basecase (p, a, n, b, n); \ else if (BELOW_THRESHOLD (n, MUL_TOOM3_THRESHOLD)) \ mpn_kara_mul_n (p, a, b, n, ws); \ else \ mpn_toom3_mul_n (p, a, b, n, ws); \ } while (0) #define TOOM3_SQR_REC(p, a, n, ws) \ do { \ if (SQR_TOOM3_THRESHOLD / 3 < SQR_BASECASE_THRESHOLD \ && BELOW_THRESHOLD (n, SQR_BASECASE_THRESHOLD)) \ mpn_mul_basecase (p, a, n, a, n); \ else if (SQR_TOOM3_THRESHOLD / 3 < SQR_KARATSUBA_THRESHOLD \ && BELOW_THRESHOLD (n, SQR_KARATSUBA_THRESHOLD)) \ mpn_sqr_basecase (p, a, n); \ else if (BELOW_THRESHOLD (n, SQR_TOOM3_THRESHOLD)) \ mpn_kara_sqr_n (p, a, n, ws); \ else \ mpn_toom3_sqr_n (p, a, n, ws); \ } while (0) /* The necessary temporary space T(n) satisfies T(n)=0 for n < THRESHOLD, and T(n) <= max(2n+2, 6k+3, 4k+3+T(k+1)) otherwise, where k = ceil(n/3). Assuming T(n) >= 2n, 6k+3 <= 4k+3+T(k+1). Similarly, 2n+2 <= 6k+2 <= 4k+3+T(k+1). With T(n) = 2n+S(n), this simplifies to S(n) <= 9 + S(k+1). Since THRESHOLD >= 17, we have n/(k+1) >= 19/8 thus S(n) <= S(n/(19/8)) + 9 thus S(n) <= 9*log(n)/log(19/8) <= 8*log2(n). We need in addition 2*r for mpn_sublsh1_n, so the total is at most 8/3*n+8*log2(n). */ void mpn_toom3_mul_n (mp_ptr c, mp_srcptr a, mp_srcptr b, mp_size_t n, mp_ptr t) { mp_size_t k, k1, kk1, r, twok, twor; mp_limb_t cy, cc, saved, vinf0, cinf0; mp_ptr trec; int sa, sb; mp_ptr c1, c2, c3, c4, c5; ASSERT(GMP_NUMB_BITS >= 6); ASSERT(n >= 17); /* so that r <> 0 and 5k+3 <= 2n */ /* The algorithm is the following: 0. k = ceil(n/3), r = n - 2k, B = 2^(GMP_NUMB_BITS), t = B^k 1. split a and b in three parts each a0, a1, a2 and b0, b1, b2 with a0, a1, b0, b1 of k limbs, and a2, b2 of r limbs 2. v0 <- a0*b0 v1 <- (a0+a1+a2)*(b0+b1+b2) v2 <- (a0+2*a1+4*a2)*(b0+2*b1+4*b2) vm1 <- (a0-a1+a2)*(b0-b1+b2) vinf <- a2*b2 t1 <- (3*v0+2*vm1+v2)/6-2*vinf t2 <- (v1+vm1)/2 3. result is c0+c1*t+c2*t^2+c3*t^3+c4*t^4 where c0 <- v0 c1 <- v1 - t1 c2 <- t2 - v0 - vinf c3 <- t1 - t2 c4 <- vinf */ k = (n + 2) / 3; /* ceil(n/3) */ twok = 2 * k; k1 = k + 1; kk1 = k + k1; r = n - twok; /* last chunk */ twor = 2 * r; c1 = c + k; c2 = c1 + k; c3 = c2 + k; c4 = c3 + k; c5 = c4 + k; trec = t + 4 * k + 3; /* trec = v2 + (2k+2) */ /* put a0+a2 in {c, k+1}, and b0+b2 in {c+k+1, k+1}; put a0+a1+a2 in {c+2k+2, k+1} and b0+b1+b2 in {c+3k+3,k+1} [requires 4k+4 <= 2n, ie. n >= 8] */ cy = mpn_add_n (c, a, a + twok, r); cc = mpn_add_n (c1 + 1, b, b + twok, r); if (r < k) { __GMPN_ADD_1 (cy, c + r, a + r, k - r, cy); __GMPN_ADD_1 (cc, c1 + 1 + r, b + r, k - r, cc); } c3[2] = (c1[0] = cy) + mpn_add_n (c2 + 2, c, a + k, k); c4[3] = (c2[1] = cc) + mpn_add_n (c3 + 3, c1 + 1, b + k, k); #define v2 (t+2*k+1) #define vinf (t+4*k+2) /* compute v1 := (a0+a1+a2)*(b0+b1+b2) in {t, 2k+1}; since v1 < 9*B^(2k), v1 uses only 2k+1 words if GMP_NUMB_BITS >= 4 */ TOOM3_MUL_REC (t, c2 + 2, c3 + 3, k1, trec); /* {c,2k} {c+2k,2k+1} {c+4k+1,2r-1} {t,2k+1} {t+2k+1,2k+1} {t+4k+2,2r} v1 */ /* put |a0-a1+a2| in {c, k+1} and |b0-b1+b2| in {c+4k+2,k+1} */ /* sa = sign(a0-a1+a2) */ sa = (c[k] != 0) ? 1 : mpn_cmp (c, a + k, k); c[k] = (sa >= 0) ? c[k] - mpn_sub_n (c, c, a + k, k) : mpn_sub_n (c, a + k, c, k); /* b0+b2 is in {c+k+1, k+1} now */ sb = (c2[1] != 0) ? 1 : mpn_cmp (c1 + 1, b + k, k); c5[2] = (sb >= 0) ? c2[1] - mpn_sub_n (c4 + 2, c1 + 1, b + k, k) : mpn_sub_n (c4 + 2, b + k, c1 + 1, k); sa *= sb; /* sign of vm1 */ /* compute vm1 := (a0-a1+a2)*(b0-b1+b2) in {c+2k, 2k+1}; since |vm1| < 4*B^(2k), vm1 uses only 2k+1 limbs */ TOOM3_MUL_REC (c2, c, c4 + 2, k1, trec); /* {c,2k} {c+2k,2k+1} {c+4k+1,2r-1} {t,2k+1} {t+2k+1,2k+1} {t+4k+2,2r} vm1 v1 */ /* compute a0+2a1+4a2 in {c, k+1} and b0+2b1+4b2 in {c+4k+2, k+1} [requires 5k+3 <= 2n, i.e. n >= 17] */ #ifdef HAVE_NATIVE_mpn_addlsh1_n c1[0] = mpn_addlsh1_n (c, a + k, a + twok, r); c5[2] = mpn_addlsh1_n (c4 + 2, b + k, b + twok, r); if (r < k) { __GMPN_ADD_1 (c1[0], c + r, a + k + r, k - r, c1[0]); __GMPN_ADD_1 (c5[2], c4 + 2 + r, b + k + r, k - r, c5[2]); } c1[0] = 2 * c1[0] + mpn_addlsh1_n (c, a, c, k); c5[2] = 2 * c5[2] + mpn_addlsh1_n (c4 + 2, b, c4 + 2, k); #else c[r] = mpn_lshift1 (c, a + twok, r); c4[r + 2] = mpn_lshift1 (c4 + 2, b + twok, r); if (r < k) { MPN_ZERO(c + r + 1, k - r); MPN_ZERO(c4 + r + 3, k - r); } c1[0] += mpn_add_n (c, c, a + k, k); c5[2] += mpn_add_n (c4 + 2, c4 + 2, b + k, k); mpn_lshift1 (c, c, k1); mpn_lshift1 (c4 + 2, c4 + 2, k1); c1[0] += mpn_add_n (c, c, a, k); c5[2] += mpn_add_n (c4 + 2, c4 + 2, b, k); #endif /* compute v2 := (a0+2a1+4a2)*(b0+2b1+4b2) in {t+2k+1, 2k+1} v2 < 49*B^k so v2 uses at most 2k+1 limbs if GMP_NUMB_BITS >= 6 */ TOOM3_MUL_REC (v2, c, c4 + 2, k1, trec); /* {c,2k} {c+2k,2k+1} {c+4k+1,2r-1} {t,2k+1} {t+2k+1,2k+1} {t+4k+2,2r} vm1 v1 v2 */ /* compute v0 := a0*b0 in {c, 2k} */ TOOM3_MUL_REC (c, a, b, k, trec); /* {c,2k} {c+2k,2k+1} {c+4k+1,2r-1} {t,2k+1} {t+2k+1,2k+1} {t+4k+2,2r} v0 vm1 v1 v2 */ /* now compute (3v0+2vm1+v2)/6 = [v0 + (2vm1+v2)/3]/2 v2 <- v2+2vm1 = 3*(a0*b0+2*a0*b2+2*a1*b1+2*a1*b2+2*a2*b0+2*a2*b1+6*a2*b2), thus 0 <= v2 < 51*B^(2k) < 2^6*B^(2k) Uses temporary space {t+4k+2,2k+1}, requires T(n) >= 6k+3. */ if (sa >= 0) { #ifdef HAVE_NATIVE_mpn_addlsh1_n mpn_addlsh1_n (v2, v2, c2, kk1); #else /* we can use vinf=t+4k+2 as workspace since it is not full yet */ mpn_lshift1 (vinf, c2, kk1); mpn_add_n (v2, v2, vinf, kk1); #endif } else { #ifdef HAVE_NATIVE_mpn_sublsh1_n mpn_sublsh1_n (v2, v2, c2, kk1); #else /* we can use vinf=t+4k+2 as workspace since it is not full yet */ mpn_lshift1 (vinf, c2, kk1); mpn_sub_n (v2, v2, vinf, kk1); #endif } /* {c,2k} {c+2k,2k+1} {c+4k+1,2r-1} {t,2k+1} {t+2k+1,2k+1} {t+4k+2,2r} v0 vm1 v1 v2+2vm1 */ /* compute vinf := a2*b2 in {t+4k+2, 2r}: first put it in {c4, 2r}, then copy it in {t+4k+2,2r} */ saved = c4[0]; TOOM3_MUL_REC (c4, a + twok, b + twok, r, trec); cinf0 = mpn_add_n (vinf, c4, c, twor); /* {v0,2r} + {vinf,2r} */ vinf0 = c4[0]; c4[0] = saved; toom3_interpolate (c, t, v2, c2, vinf, k, r, sa, vinf0, cinf0, vinf + twor); #undef v2 #undef vinf } void mpn_toom3_sqr_n (mp_ptr c, mp_srcptr a, mp_size_t n, mp_ptr t) { mp_size_t k, k1, kk1, r, twok, twor; mp_limb_t cy, saved, vinf0, cinf0; mp_ptr trec; int sa; mp_ptr c1, c2, c3, c4; ASSERT(GMP_NUMB_BITS >= 6); ASSERT(n >= 17); /* so that r <> 0 and 5k+3 <= 2n */ /* the algorithm is the same as mpn_mul_n_tc3, with b=a */ k = (n + 2) / 3; /* ceil(n/3) */ twok = 2 * k; k1 = k + 1; kk1 = k + k1; r = n - twok; /* last chunk */ twor = 2 * r; c1 = c + k; c2 = c1 + k; c3 = c2 + k; c4 = c3 + k; trec = t + 4 * k + 3; /* trec = v2 + (2k+2) */ cy = mpn_add_n (c, a, a + twok, r); if (r < k) __GMPN_ADD_1 (cy, c + r, a + r, k - r, cy); c3[2] = (c1[0] = cy) + mpn_add_n (c2 + 2, c, a + k, k); #define v2 (t+2*k+1) #define vinf (t+4*k+2) TOOM3_SQR_REC (t, c2 + 2, k1, trec); sa = (c[k] != 0) ? 1 : mpn_cmp (c, a + k, k); c[k] = (sa >= 0) ? c[k] - mpn_sub_n (c, c, a + k, k) : mpn_sub_n (c, a + k, c, k); TOOM3_SQR_REC (c2, c, k1, trec); #ifdef HAVE_NATIVE_mpn_addlsh1_n c1[0] = mpn_addlsh1_n (c, a + k, a + twok, r); if (r < k) __GMPN_ADD_1 (c1[0], c + r, a + k + r, k - r, c1[0]); c1[0] = 2 * c1[0] + mpn_addlsh1_n (c, a, c, k); #else c[r] = mpn_lshift1 (c, a + twok, r); if (r < k) MPN_ZERO(c + r + 1, k - r); c1[0] += mpn_add_n (c, c, a + k, k); mpn_lshift1 (c, c, k1); c1[0] += mpn_add_n (c, c, a, k); #endif TOOM3_SQR_REC (v2, c, k1, trec); TOOM3_SQR_REC (c, a, k, trec); #ifdef HAVE_NATIVE_mpn_addlsh1_n mpn_addlsh1_n (v2, v2, c2, kk1); #else mpn_lshift1 (t + 4 * k + 2, c2, kk1); mpn_add_n (v2, v2, t + 4 * k + 2, kk1); #endif saved = c4[0]; TOOM3_SQR_REC (c4, a + twok, r, trec); cinf0 = mpn_add_n (vinf, c4, c, twor); vinf0 = c4[0]; c4[0] = saved; toom3_interpolate (c, t, v2, c2, vinf, k, r, 1, vinf0, cinf0, vinf + twor); #undef v2 #undef vinf } void mpn_mul_n (mp_ptr p, mp_srcptr a, mp_srcptr b, mp_size_t n) { ASSERT (n >= 1); ASSERT (! MPN_OVERLAP_P (p, 2 * n, a, n)); ASSERT (! MPN_OVERLAP_P (p, 2 * n, b, n)); if (BELOW_THRESHOLD (n, MUL_KARATSUBA_THRESHOLD)) { mpn_mul_basecase (p, a, n, b, n); } else if (BELOW_THRESHOLD (n, MUL_TOOM3_THRESHOLD)) { /* Allocate workspace of fixed size on stack: fast! */ mp_limb_t ws[MPN_KARA_MUL_N_TSIZE (MUL_TOOM3_THRESHOLD_LIMIT-1)]; ASSERT (MUL_TOOM3_THRESHOLD <= MUL_TOOM3_THRESHOLD_LIMIT); mpn_kara_mul_n (p, a, b, n, ws); } #if WANT_FFT || TUNE_PROGRAM_BUILD else if (BELOW_THRESHOLD (n, MUL_FFT_THRESHOLD)) #else else if (BELOW_THRESHOLD (n, MPN_TOOM3_MAX_N)) #endif { mp_ptr ws; TMP_SDECL; TMP_SMARK; ws = TMP_SALLOC_LIMBS (MPN_TOOM3_MUL_N_TSIZE (n)); mpn_toom3_mul_n (p, a, b, n, ws); TMP_SFREE; } else #if WANT_FFT || TUNE_PROGRAM_BUILD { /* The current FFT code allocates its own space. That should probably change. */ mpn_mul_fft_full (p, a, n, b, n); } #else { /* Toom3 for large operands. Use workspace from the heap, as stack space may be limited. Since n is at least MUL_TOOM3_THRESHOLD, multiplication will take much longer than malloc()/free(). */ mp_ptr ws; mp_size_t ws_size; ws_size = MPN_TOOM3_MUL_N_TSIZE (n); ws = __GMP_ALLOCATE_FUNC_LIMBS (ws_size); mpn_toom3_mul_n (p, a, b, n, ws); __GMP_FREE_FUNC_LIMBS (ws, ws_size); } #endif } void mpn_sqr_n (mp_ptr p, mp_srcptr a, mp_size_t n) { ASSERT (n >= 1); ASSERT (! MPN_OVERLAP_P (p, 2 * n, a, n)); #if 0 /* FIXME: Can this be removed? */ if (n == 0) return; #endif if (BELOW_THRESHOLD (n, SQR_BASECASE_THRESHOLD)) { /* mul_basecase is faster than sqr_basecase on small sizes sometimes */ mpn_mul_basecase (p, a, n, a, n); } else if (BELOW_THRESHOLD (n, SQR_KARATSUBA_THRESHOLD)) { mpn_sqr_basecase (p, a, n); } else if (BELOW_THRESHOLD (n, SQR_TOOM3_THRESHOLD)) { /* Allocate workspace of fixed size on stack: fast! */ mp_limb_t ws[MPN_KARA_SQR_N_TSIZE (SQR_TOOM3_THRESHOLD_LIMIT-1)]; ASSERT (SQR_TOOM3_THRESHOLD <= SQR_TOOM3_THRESHOLD_LIMIT); mpn_kara_sqr_n (p, a, n, ws); } #if WANT_FFT || TUNE_PROGRAM_BUILD else if (BELOW_THRESHOLD (n, SQR_FFT_THRESHOLD)) #else else if (BELOW_THRESHOLD (n, MPN_TOOM3_MAX_N)) #endif { mp_ptr ws; TMP_SDECL; TMP_SMARK; ws = TMP_SALLOC_LIMBS (MPN_TOOM3_SQR_N_TSIZE (n)); mpn_toom3_sqr_n (p, a, n, ws); TMP_SFREE; } else #if WANT_FFT || TUNE_PROGRAM_BUILD { /* The current FFT code allocates its own space. That should probably change. */ mpn_mul_fft_full (p, a, n, a, n); } #else { /* Toom3 for large operands. Use workspace from the heap, as stack space may be limited. Since n is at least MUL_TOOM3_THRESHOLD, multiplication will take much longer than malloc()/free(). */ mp_ptr ws; mp_size_t ws_size; ws_size = MPN_TOOM3_SQR_N_TSIZE (n); ws = __GMP_ALLOCATE_FUNC_LIMBS (ws_size); mpn_toom3_sqr_n (p, a, n, ws); __GMP_FREE_FUNC_LIMBS (ws, ws_size); } #endif }