/* lgcd.c Lehmer gcd, based on mpn_nhgcd2. Copyright 2004, 2005 Niels Möller Copyright 2009, 2010 William Hart This file is part of the MPIR Library. The MPIR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPIR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPIR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include "mpir.h" #include "gmp-impl.h" #include "longlong.h" /* Extract one limb, shifting count bits left ________ ________ |___xh___||___xl___| |____r____| >count < The count includes any nail bits, so it should work fine if count is computed using count_leading_zeros. */ #define MPN_EXTRACT_LIMB(count, xh, xl) \ (((xh) << (count)) | ((xl) >> (GMP_LIMB_BITS - (count)))) /* Use binary algorithm to compute V <-- GCD (V, U) for usize, vsize == 2. Both U and V must be odd. */ static inline mp_size_t gcd_2 (mp_ptr vp, mp_srcptr up) { mp_limb_t u0, u1, v0, v1; mp_size_t vsize; u0 = up[0]; u1 = up[1]; v0 = vp[0]; v1 = vp[1]; while (u1 != v1 && u0 != v0) { unsigned long int r; if (u1 > v1) { u1 -= v1 + (u0 < v0); u0 = (u0 - v0) & GMP_NUMB_MASK; count_trailing_zeros (r, u0); u0 = ((u1 << (GMP_NUMB_BITS - r)) & GMP_NUMB_MASK) | (u0 >> r); u1 >>= r; } else /* u1 < v1. */ { v1 -= u1 + (v0 < u0); v0 = (v0 - u0) & GMP_NUMB_MASK; count_trailing_zeros (r, v0); v0 = ((v1 << (GMP_NUMB_BITS - r)) & GMP_NUMB_MASK) | (v0 >> r); v1 >>= r; } } vp[0] = v0, vp[1] = v1, vsize = 1 + (v1 != 0); /* If U == V == GCD, done. Otherwise, compute GCD (V, |U - V|). */ if (u1 == v1 && u0 == v0) return vsize; v0 = (u0 == v0) ? (u1 > v1) ? u1-v1 : v1-u1 : (u0 > v0) ? u0-v0 : v0-u0; vp[0] = mpn_gcd_1 (vp, vsize, v0); return 1; } #if 1 static void mul_2 (mp_ptr rp, mp_srcptr ap, mp_size_t n, mp_srcptr bp) { mp_limb_t bh, bl; /* Chaining variables */ mp_limb_t cy, hi; /* Temporaries */ mp_limb_t sh, sl; mp_limb_t th, tl; mp_size_t i; ASSERT (n > 1); bl = bp[0]; umul_ppmm (hi, rp[0], bl, ap[0]); bh = bp[1]; for (i = 1, cy = 0; i < n; i++) { umul_ppmm (sh, sl, bh, ap[i-1]); umul_ppmm (th, tl, bl, ap[i]); /* We can always add in cy and hi without overflow */ add_ssaaaa (sh, sl, sh, sl, cy, hi); add_ssaaaa (hi, rp[i], th, tl, sh, sl); cy = (hi < th); } umul_ppmm (sh, sl, bh, ap[n-1]); add_ssaaaa (rp[n+1], rp[n], sh, sl, cy, hi); } #else static void mul_2 (mp_ptr rp, mp_srcptr ap, mp_size_t n, mp_srcptr bp) { rp[n] = mpn_mul_1 (rp, ap, n, bp[0]); rp[n+1] = mpn_addmul_1 (rp + 1, ap, n, bp[1]); } #endif /* Computes x . y = x_1 y_1 + x_2 y_2. No check for overflow. */ #define dotmul_ppxxyy(ph, pl, x1, x2, y1, y2) \ do { \ mp_limb_t dotmul_sh, dotmul_sl, dotmul_th, dotmul_tl; \ umul_ppmm (dotmul_sh, dotmul_sl, (x1), (y1)); \ umul_ppmm (dotmul_th, dotmul_tl, (x2), (y2)); \ add_ssaaaa ((ph), (pl), dotmul_sh, dotmul_sl, dotmul_th, dotmul_tl); \ } while (0) struct ngcd_matrix2 { mp_limb_t u[2][2][2]; }; /* Performs two hgcd2 steps on the five-limb numbers ap, bp. Three possible results: 0 The first nhgcd2 call failed. 1 The first nhgcd2 call succeeded, the second failed. ap, bp are updated, and the resulting matrix is returned in M1. 2 Both hgcd2 calls succeeded. ap, bp are updated. The resulting matrix is returned in M. Returns the reduced size of ap, bp, >= 3. */ static mp_size_t nhgcd5 (mp_ptr ap, mp_ptr bp, int *res, struct ngcd_matrix1 *M1, struct ngcd_matrix2 *M) { struct ngcd_matrix1 M2; mp_limb_t t[5]; mp_size_t n; mp_limb_t ah, al, bh, bl; mp_limb_t mask; mask = ap[4] | bp[4]; ASSERT (mask > 0); if (mask & GMP_NUMB_HIGHBIT) { ah = ap[4]; al = ap[3]; bh = bp[4]; bl = bp[3]; } else { int shift; count_leading_zeros (shift, mask); ah = MPN_EXTRACT_LIMB (shift, ap[4], ap[3]); al = MPN_EXTRACT_LIMB (shift, ap[3], ap[2]); bh = MPN_EXTRACT_LIMB (shift, bp[4], bp[3]); bl = MPN_EXTRACT_LIMB (shift, bp[3], bp[2]); } /* Try an mpn_nhgcd2 step */ if (!mpn_nhgcd2 (ah, al, bh, bl, M1)) { *res = 0; return 0; } n = mpn_ngcd_matrix1_vector (M1, 5, ap, bp, t); ASSERT (n >= 4); mask = ap[n-1] | bp[n-1]; ASSERT (mask > 0); if (mask & GMP_NUMB_HIGHBIT) { ah = ap[n-1]; al = ap[n-2]; bh = bp[n-1]; bl = bp[n-2]; } else { int shift; count_leading_zeros (shift, mask); ah = MPN_EXTRACT_LIMB (shift, ap[n-1], ap[n-2]); al = MPN_EXTRACT_LIMB (shift, ap[n-2], ap[n-3]); bh = MPN_EXTRACT_LIMB (shift, bp[n-1], bp[n-2]); bl = MPN_EXTRACT_LIMB (shift, bp[n-2], bp[n-3]); } if (!mpn_nhgcd2(ah, al, bh, bl, &M2)) { *res = 1; return n; } n = mpn_ngcd_matrix1_vector (&M2, n, ap, bp, t); ASSERT (n >= 3); /* Multiply M = M1 M2 */ dotmul_ppxxyy (M->u[0][0][1], M->u[0][0][0], M1->u[0][0], M1->u[0][1], M2.u[0][0], M2.u[1][0]); dotmul_ppxxyy (M->u[0][1][1], M->u[0][1][0], M1->u[0][0], M1->u[0][1], M2.u[0][1], M2.u[1][1]); dotmul_ppxxyy (M->u[1][0][1], M->u[1][0][0], M1->u[1][0], M1->u[1][1], M2.u[0][0], M2.u[1][0]); dotmul_ppxxyy (M->u[1][1][1], M->u[1][1][0], M1->u[1][0], M1->u[1][1], M2.u[0][1], M2.u[1][1]); *res = 2; return n; } /* Multiplies the least significant p limbs of a,b by M^-1, and adds to the most significant n limbs. Needs temporary space p. */ static mp_size_t ngcd_matrix1_adjust (struct ngcd_matrix1 *M, mp_size_t n, mp_ptr ap, mp_ptr bp, mp_size_t p, mp_ptr tp) { /* M^-1 (a;b) = (r11, -r01; -r10, r00) (a ; b) = (r11 a - r01 b; - r10 a + r00 b */ mp_limb_t ah, bh; mp_limb_t cy; /* Copy old value */ MPN_COPY(tp, ap, p); /* Update a */ ah = mpn_mul_1 (ap, ap, p, M->u[1][1]); cy = mpn_submul_1 (ap, bp, p, M->u[0][1]); if (cy > ah) { MPN_DECR_U (ap + p, n, cy - ah); ah = 0; } else { ah -= cy; if (ah > 0) ah = mpn_add_1 (ap + p, ap + p, n, ah); } /* Update b */ bh = mpn_mul_1 (bp, bp, p, M->u[0][0]); cy = mpn_submul_1 (bp, tp, p, M->u[1][0]); if(cy > bh) { MPN_DECR_U (bp + p, n, cy - bh); bh = 0; } else { bh -= cy; if (bh > 0) bh = mpn_add_1 (bp + p, bp + p, n, bh); } n += p; if (ah > 0 || bh > 0) { ap[n] = ah; bp[n] = bh; n++; } else { /* The subtraction can reduce the size by at most one limb. */ if (ap[n-1] == 0 && bp[n-1] == 0) n--; } ASSERT (ap[n-1] > 0 || bp[n-1] > 0); return n; } /* Multiplies the least significant p limbs of a,b by M^-1, and adds to the most significant n limbs. Needs temporary 2*(p + 2). */ static mp_size_t ngcd_matrix2_adjust (struct ngcd_matrix2 *M, mp_size_t n, mp_ptr ap, mp_ptr bp, mp_size_t p, mp_ptr tp) { /* M^-1 (a;b) = (r11, -r01; -r10, r00) (a ; b) = (r11 a - r01 b; - r10 a + r00 b */ mp_ptr t0 = tp; mp_ptr t1 = tp + p + 2; mp_limb_t ah, bh; mp_limb_t cy; ASSERT (n > 2); ASSERT (p >= 2); /* First compute the two values depending on a, before overwriting a */ mul_2 (t0, ap, p, M->u[1][1]); mul_2 (t1, ap, p, M->u[1][0]); /* Update a */ MPN_COPY (ap, t0, p); ah = mpn_add (ap + p, ap + p, n, t0 + p, 2); mpn_mul (t0, bp, p, M->u[0][1], 2); cy = mpn_sub (ap, ap, n + p, t0, p + 2); ASSERT (cy <= ah); ah -= cy; /* Update b */ mpn_mul (t0, bp, p, M->u[0][0], 2); MPN_COPY (bp, t0, p); bh = mpn_add (bp + p, bp + p, n, t0 + p, 2); cy = mpn_sub (bp, bp, n + p, t1, p + 2); ASSERT (cy <= bh); bh -= cy; n+= p; if (ah > 0 || bh > 0) { ap[n] = ah; bp[n] = bh; n++; } else { /* The subtraction can reduce the size by at most one limb. */ if (ap[n-1] == 0 && bp[n-1] == 0) n--; } ASSERT (ap[n-1] > 0 || bp[n-1] > 0); return n; } /* Needs temporary storage for the division */ /* If the gcd is found, stores it in gp and *gn, and returns zero. Otherwise, compute the reduced a and b, and return the new size. */ mp_size_t mpn_ngcd_subdiv_step (mp_ptr gp, mp_size_t *gn, mp_ptr ap, mp_ptr bp, mp_size_t n, mp_ptr tp) { /* Called when nhgcd or mpn_nhgcd2 has failed. Then either one of a or b is very small, or the difference is very small. Perform one subtraction followed by one division. */ mp_size_t an, bn; ASSERT (n > 0); ASSERT (ap[n-1] > 0 || bp[n-1] > 0); /* First, make sure that an >= bn, and subtract an -= bn */ for (an = n; an > 0; an--) if (ap[an-1] != bp[an-1]) break; if (an == 0) { /* Done */ MPN_COPY (gp, ap, n); *gn = n; return 0; } if (ap[an-1] < bp[an-1]) MP_PTR_SWAP (ap, bp); bn = n; MPN_NORMALIZE (bp, bn); if (bn == 0) { MPN_COPY (gp, ap, n); *gn = n; return 0; } ASSERT_NOCARRY (mpn_sub_n (ap, ap, bp, an)); MPN_NORMALIZE (ap, an); ASSERT (an > 0); if (an < bn) MPN_PTR_SWAP (ap, an, bp, bn); else if (an == bn) { int c; MPN_CMP (c, ap, bp, an); if (c < 0) MP_PTR_SWAP (ap, bp); } ASSERT (an >= bn); mpn_tdiv_qr (tp, ap, 0, ap, an, bp, bn); /* Normalizing seems to be the simplest way to test if the remainder is zero. */ an = bn; MPN_NORMALIZE (ap, an); if (an == 0) { MPN_COPY (gp, bp, bn); *gn = bn; return 0; } return bn; } #define EVEN_P(x) (((x) & 1) == 0) /* Needs n limbs of storage for ngcd_matrix1_vector, or n+1 for division, or 2*n for ngcd_matrix2_adjust. */ mp_size_t mpn_ngcd_lehmer (mp_ptr gp, mp_ptr ap, mp_ptr bp, mp_size_t n, mp_ptr tp) { mp_size_t gn; while (ABOVE_THRESHOLD (n, NGCD_LEHMER_THRESHOLD)) { struct ngcd_matrix1 M1; struct ngcd_matrix2 M2; mp_size_t p; int res; mp_size_t nn; p = n - 5; nn = nhgcd5 (ap + p, bp + p, &res, &M1, &M2); switch (res) { default: abort(); case 0: n = mpn_ngcd_subdiv_step (gp, &gn, ap, bp, n, tp); if (n == 0) return gn; break; case 1: n = ngcd_matrix1_adjust (&M1, nn, ap, bp, p, tp); break; case 2: n = ngcd_matrix2_adjust (&M2, nn, ap, bp, p, tp); break; } } while (n > 2) { struct ngcd_matrix1 M; mp_limb_t ah, al, bh, bl; mp_limb_t mask; mask = ap[n-1] | bp[n-1]; ASSERT (mask > 0); if (mask & GMP_NUMB_HIGHBIT) { ah = ap[n-1]; al = ap[n-2]; bh = bp[n-1]; bl = bp[n-2]; } else { int shift; count_leading_zeros (shift, mask); ah = MPN_EXTRACT_LIMB (shift, ap[n-1], ap[n-2]); al = MPN_EXTRACT_LIMB (shift, ap[n-2], ap[n-3]); bh = MPN_EXTRACT_LIMB (shift, bp[n-1], bp[n-2]); bl = MPN_EXTRACT_LIMB (shift, bp[n-2], bp[n-3]); } /* Try an mpn_nhgcd2 step */ if (mpn_nhgcd2 (ah, al, bh, bl, &M)) n = mpn_ngcd_matrix1_vector (&M, n, ap, bp, tp); else { n = mpn_ngcd_subdiv_step (gp, &gn, ap, bp, n, tp); if (n == 0) return gn; } } ASSERT (n <= 2); if (n == 1) { *gp = mpn_gcd_1 (ap, 1, bp[0]); return 1; } /* Due to the calling convention for mpn_gcd, at most one can be even. */ if (EVEN_P (ap[0])) MP_PTR_SWAP (ap, bp); ASSERT (!EVEN_P (ap[0])); if (bp[0] == 0) { *gp = mpn_gcd_1 (ap, 2, bp[1]); return 1; } else if (EVEN_P (bp[0])) { int r; count_trailing_zeros (r, bp[0]); bp[0] = ((bp[1] << (GMP_NUMB_BITS - r)) & GMP_NUMB_MASK) | (bp[0] >> r); bp[1] >>= r; } n = gcd_2 (ap, bp); MPN_COPY (gp, ap, n); return n; } mp_size_t mpn_lgcd (mp_ptr gp, mp_ptr ap, mp_size_t an, mp_ptr bp, mp_size_t bn) { mp_size_t gn; mp_ptr tp; mp_size_t scratch; TMP_DECL; scratch = MPN_NGCD_LEHMER_ITCH (bn); if (an >= scratch) scratch = an + 1; TMP_MARK; tp = TMP_ALLOC_LIMBS (scratch); if (an > bn) { mpn_tdiv_qr (tp + bn, tp, 0, ap, an, bp, bn); an = bn; MPN_NORMALIZE (tp, an); if (an == 0) { MPN_COPY (gp, bp, bn); TMP_FREE; return bn; } else MPN_COPY (ap, tp, bn); } gn = mpn_ngcd_lehmer (gp, ap, bp, bn, tp); TMP_FREE; return gn; } /* Set (u0, u1) = (u0, u1) M Requires temporary space un */ void ngcdext_cofactor1_adjust(mp_ptr u0, mp_ptr u1, mp_size_t * un, struct ngcd_matrix1 *M, mp_ptr tp) { /* Let M = (r00, r01) (r10, r11) We want u0 = u0 * r00 + u1 * r10 u1 = u0 * r01 + u1 * r11 We make a copy of u0 at tp and update u0 first */ mp_limb_t cy, cy2; MPN_COPY(tp, u0, *un); cy = mpn_mul_1(u0, u0, *un, M->u[0][0]); cy += mpn_addmul_1(u0, u1, *un, M->u[1][0]); cy2 = mpn_mul_1(u1, u1, *un, M->u[1][1]); cy2 += mpn_addmul_1(u1, tp, *un, M->u[0][1]); if ((cy) || (cy2)) /* normalise u0, u1 */ { u0[*un] = cy; u1[*un] = cy2; (*un) ++; } } mp_limb_t mpn_gcdext_1(mp_limb_signed_t * a, mp_limb_signed_t *b, mp_limb_t x, mp_limb_t y) { mp_limb_signed_t u1 = CNST_LIMB(1); mp_limb_signed_t u2 = CNST_LIMB(0); mp_limb_signed_t v1 = CNST_LIMB(0); mp_limb_signed_t v2 = CNST_LIMB(1); mp_limb_signed_t t1, t2; mp_limb_t u3, v3; mp_limb_t quot, rem; u3 = x, v3 = y; if (v3 > u3) { rem = u3; t1 = u2; u2 = u1; u1 = t1; u3 = v3; t2 = v2; v2 = v1; v1 = t2; v3 = rem; } if ((mp_limb_signed_t) (x & y) < (mp_limb_signed_t) CNST_LIMB(0)) // x and y both have top bit set { quot=u3-v3; t2 = v2; t1 = u2; u2 = u1 - u2; u1 = t1; u3 = v3; v2 = v1 - v2; v1 = t2; v3 = quot; } while ((mp_limb_signed_t) (v3<<1) < (mp_limb_signed_t) CNST_LIMB(0)) // second value has second msb set { quot=u3-v3; if (quot < v3) { t2 = v2; t1 = u2; u2 = u1 - u2; u1 = t1; u3 = v3; v2 = v1 - v2; v1 = t2; v3 = quot; } else if (quot < (v3<<1)) { t1 = u2; u2 = u1 - (u2<<1); u1 = t1; u3 = v3; t2 = v2; v2 = v1 - (v2<<1); v1 = t2; v3 = quot-u3; } else { t1 = u2; u2 = u1 - 3*u2; u1 = t1; u3 = v3; t2 = v2; v2 = v1 - 3*v2; v1 = t2; v3 = quot-(u3<<1); } } while (v3) { quot=u3-v3; if (u3 < (v3<<2)) // overflow not possible due to top 2 bits of v3 not being set { if (quot < v3) { t2 = v2; t1 = u2; u2 = u1 - u2; u1 = t1; u3 = v3; v2 = v1 - v2; v1 = t2; v3 = quot; } else if (quot < (v3<<1)) { t1 = u2; u2 = u1 - (u2<<1); u1 = t1; u3 = v3; t2 = v2; v2 = v1 - (v2<<1); v1 = t2; v3 = quot-u3; } else { t1 = u2; u2 = u1 - 3*u2; u1 = t1; u3 = v3; t2 = v2; v2 = v1 - 3*v2; v1 = t2; v3 = quot-(u3<<1); } } else { quot=u3/v3; rem = u3 - v3*quot; t1 = u2; u2 = u1 - quot*u2; u1 = t1; u3 = v3; t2 = v2; v2 = v1 - quot*v2; v1 = t2; v3 = rem; } } // Quite remarkably, this always has |u1| < x/2 at this point, thus comparison with 0 is valid /*if (u1 <= (mp_limb_signed_t) 0) { u1 += y; v1 -= x; } */ *a = u1; *b = -v1; return u3; } /* Requires temporary space MPN_GCD_LEHMER_N_ITCH(n) + 2*n+2 */ mp_size_t mpn_ngcdext_lehmer (mp_ptr gp, mp_ptr s0p, mp_size_t *s0size, mp_ptr ap, mp_ptr bp, mp_size_t n, mp_ptr tp) { mp_size_t gn, un; mp_ptr u0, u1; mp_limb_t cy, cy2; mp_limb_signed_t s, t; int c, negate = 0; MPN_ZERO(tp, 2*n+2); u0 = tp; u1 = tp + n + 1; tp += 2*n + 2; un = 1; u0[0] = CNST_LIMB(0); /* bp = 0*ap + ?*bp, thus u0 = -0 */ u1[0] = CNST_LIMB(1); /* ap = 1*ap + ?*bp, thus u1 = 1 */ while (n >= 2) { struct ngcd_matrix1 M; mp_limb_t ah, al, bh, bl; mp_limb_t mask; mask = ap[n-1] | bp[n-1]; ASSERT (mask > 0); if (mask & GMP_NUMB_HIGHBIT) { ah = ap[n-1]; al = ap[n-2]; bh = bp[n-1]; bl = bp[n-2]; } else { int shift; count_leading_zeros (shift, mask); ah = MPN_EXTRACT_LIMB (shift, ap[n-1], ap[n-2]); bh = MPN_EXTRACT_LIMB (shift, bp[n-1], bp[n-2]); if (n == 2) /* special case for n = 2 */ { al = ap[0] << shift; bl = bp[0] << shift; } else { al = MPN_EXTRACT_LIMB (shift, ap[n-2], ap[n-3]); bl = MPN_EXTRACT_LIMB (shift, bp[n-2], bp[n-3]); } } /* Try an mpn_nhgcd2 step */ if (mpn_nhgcd2 (ah, al, bh, bl, &M)) { n = mpn_ngcd_matrix1_vector (&M, n, ap, bp, tp); ngcdext_cofactor1_adjust(u0, u1, &un, &M, tp); } else { n = mpn_ngcdext_subdiv_step (gp, &gn, s0p, u0, u1, &un, ap, bp, n, tp); if (n == 0) { (*s0size) = un; ASSERT(((*s0size) == 0) || (s0p[ABS(*s0size) - 1] != 0)); return gn; } } } ASSERT (n < 2); if (!ap[0]) { /* If ap == 0 then gp = bp with cofactor -u0 */ gp[0] = bp[0]; MPN_NORMALIZE(u0, un); MPN_COPY(s0p, u0, un); (*s0size) = -un; return 1; } else if (!bp[0]) { /* If bp == 0 then gp = ap with cofactor u1 case is rare */ gp[0] = ap[0]; MPN_NORMALIZE(u1, un); MPN_COPY(s0p, u1, un); (*s0size) = un; return 1; } if (ap[0] == bp[0]) { gp[0] = ap[0]; /* we have gp = ap OR bp so cofactor == u1 or -u0 we want the smallest. */ MPN_CMP(c, u1, u0, un); if (c <= 0) // u1 is smallest { MPN_NORMALIZE(u1, un); MPN_COPY(s0p, u1, un); (*s0size) = un; } else // -u0 is smaller { MPN_NORMALIZE(u0, un); MPN_COPY(s0p, u0, un); (*s0size) = -un; } return 1; } gp[0] = mpn_gcdext_1 (&s, &t, ap[0], bp[0]); if (s <= (mp_limb_signed_t) 0) { s = -s; t = -t; negate = 1; } /* We want to compute s*u1 + t*u0. */ cy = mpn_mul_1(s0p, u0, un, t); cy2 = mpn_addmul_1(s0p, u1, un, s); if (cy | cy2) /* u0 is bigger than un limbs */ { cy +=cy2; s0p[un] = cy; un++; if (cy < cy2) /* overflow on addition */ { s0p[un] = CNST_LIMB(1); un++; } } MPN_NORMALIZE(s0p, un); (*s0size) = un; if (negate) (*s0size) = -(*s0size); return 1; }