/* Copyright 2009 Jason Moxham This file is part of the MPIR Library. The MPIR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPIR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPIR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "mpir.h" #include "gmp-impl.h" int mpz_probable_prime_p (mpz_srcptr N, gmp_randstate_t STATE, int PROB, mpir_ui td) { int d, t, i, r; mpz_t base, nm1, x, e, n; ALLOC(n) = ALLOC(N); SIZ(n) = ABSIZ(N); PTR(n) = PTR(N); /* fake up an absolute value that we dont have de-allocate */ /* algorithm dose not handle small values, get rid of them here */ if (mpz_cmp_ui(n, 2) == 0 || mpz_cmp_ui(n, 3) == 0) return 1; if (mpz_cmp_ui(n, 5) < 0 || mpz_even_p(n)) return 0; /* We assume we know nothing about N, i.e. it is a random integer So we try here anything which speeds up the average case We try some trial division */ #define LIM 1024 d = mpz_trial_division(n, 3, LIM); if (d != 0) { if (mpz_cmp_ui(n, d) == 0) return 1; return 0; } if (mpz_cmp_ui(n, LIM * LIM) < 0) return 1; ASSERT (mpz_odd_p(n)); ASSERT (mpz_cmp_ui(n, 5) >= 0); /* now do some random strong pseudoprime tests */ mpz_init(base); mpz_init_set(nm1, n); mpz_sub_ui(nm1, nm1, 1); mpz_init(e); mpz_init(x); t = mpz_scan1(nm1, 0); /* 2^t divides nm1 */ ASSERT (t > 0); mpz_tdiv_q_2exp (e, nm1, t); /* e = nm1/2^t */ r = 1; while (PROB > 0) { PROB -= 2; do { mpz_urandomm (base, STATE, nm1); } while (mpz_cmp_ui (base, 1) <= 0); mpz_powm (x, base, e, n); /* x = base^e mod n */ if (mpz_cmp_ui(x, 1) == 0 || mpz_cmp(x, nm1) == 0) continue; for (i = t - 1; i > 0; i--) { mpz_mul(x, x, x); mpz_mod(x, x, n); if (mpz_cmp(x, nm1) == 0) break; if (mpz_cmp_ui(x, 1) == 0) { r = 0; break; } } if (i == 0 || r == 0) { r = 0; break; } } mpz_clear (nm1); mpz_clear (x); mpz_clear (e); mpz_clear (base); return r; }