/* mersenne_prime_p(k) return true iff kth Mersenne number is prime Copyright 2009 Jason Moxham This file is part of the MPIR Library. The MPIR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPIR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPIR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include "mpir.h" //#include "gmp-impl.h" //#include "longlong.h" #define BITS_PER_ULONG (8*sizeof(unsigned long)) #define BITS_TO_LIMBS(x) (((x)+GMP_NUMB_BITS-1)/GMP_NUMB_BITS) #ifndef MPN_ZERO #define MPN_ZERO(xp,xn) do{mp_size_t __i;for(__i=(xn)-1;__i>=0;__i--)(xp)[__i]=0;}while(0) #endif #ifndef __GMP_ALLOCATE_FUNC_LIMBS #define __GMP_ALLOCATE_FUNC_LIMBS(x) malloc((x)*sizeof(mp_limb_t)) #endif #ifndef __GMP_FREE_FUNC_LIMBS #define __GMP_FREE_FUNC_LIMBS(x,y) free(x) #endif #ifndef ASSERT_NOCARRY #define ASSERT_NOCARRY(x) (x) #endif #ifndef count_leading_zeros #define count_leading_zeros(c,y) do{mp_limb_t __c=0,__x=(y);while(__x!=0){__c++;__x/=2;}(c)=GMP_LIMB_BITS-__c;}while(0) #endif static int isprime (unsigned long x) { unsigned long d, dd; if (x == 2 || x == 3 || x == 5) return 1; if (x == 1 || x % 2 == 0 || x % 3 == 0) return 0; for (dd = 2, d = 5;; d += dd, dd = 6 - dd) { if (x % d == 0) return 0; if (x / d < d) return 1; } } /* Lucas-Lehmer Test for k>=1 where k is odd prime 2^k-1 is prime if and only if V(k-2)==0 mod 2^k-1 where v(0)=4 v(i)=v(i-1)^2-2 */ // trial division(or sieving) would eliminate trial numbers MUCH faster // This code is for benchmarking , ie how quick can we run a Lucas-Lehmer test , not how quick can we find Mersenne primes // perhaps we should call it lucas_lehmer_p() ? int mersenne_prime_p (unsigned long k) { int r, cc; unsigned long c, lg; mp_ptr xp, tp, rp, pp, sp; mp_size_t n; if (k < 2) return 0; if (k == 2) return 1; if (!isprime (k)) return 0; n = BITS_TO_LIMBS (k); count_leading_zeros (lg, k); lg = BITS_PER_ULONG - lg; pp = __GMP_ALLOCATE_FUNC_LIMBS (7 * n + 5 * lg); xp = pp; // have n limbs rp = pp + n; // have n limbs tp = pp + 2 * n; // have 5n+5lg(k) MPN_ZERO (xp, n); xp[0] = 4; for (c = 1; c <= k - 2; c++) { mpn_mulmod_2expm1 (rp, xp, xp, k, tp); // mpn_sqrmod_2expm1 would be faster cc = mpn_sub_1 (rp, rp, n, 2); ASSERT_NOCARRY (mpn_sub_1 (rp, rp, n, cc)); sp = xp; xp = rp; rp = sp; } // Although there are in general two representations of zero // we can only have the obvious one here r = 1; for (c = 0; c < n; c++) if (xp[c] != 0) { r = 0; break; } __GMP_FREE_FUNC_LIMBS (pp, 7 * n + 5 * lg); return r; } int main (int argc, char *argv[]) { int k, p; if (argc != 2) { printf ("Usage: %s k\nDisplays primality of M(k)\n", argv[0]); return 1; } k = atoi (argv[1]); p = mersenne_prime_p (k); printf ("The Mersenne number M(%d)=2^%d-1 is ", k, k); if (p == 0) printf ("not "); printf ("prime\n"); return 0; }