dnl Intel P6 mpn_mul_basecase -- multiply two mpn numbers. dnl Copyright 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc. dnl dnl This file is part of the GNU MP Library. dnl dnl The GNU MP Library is free software; you can redistribute it and/or dnl modify it under the terms of the GNU Lesser General Public License as dnl published by the Free Software Foundation; either version 2.1 of the dnl License, or (at your option) any later version. dnl dnl The GNU MP Library is distributed in the hope that it will be useful, dnl but WITHOUT ANY WARRANTY; without even the implied warranty of dnl MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU dnl Lesser General Public License for more details. dnl dnl You should have received a copy of the GNU Lesser General Public dnl License along with the GNU MP Library; see the file COPYING.LIB. If dnl not, write to the Free Software Foundation, Inc., 51 Franklin Street, dnl Fifth Floor, Boston, MA 02110-1301, USA. include(`../config.m4') C P6: approx 6.5 cycles per cross product (16 limbs/loop unrolling). dnl P6 UNROLL_COUNT cycles/product (approx) dnl 8 7 dnl 16 6.5 dnl 32 6.4 dnl Maximum possible with the current code is 32. deflit(UNROLL_COUNT, 16) C void mpn_mul_basecase (mp_ptr wp, C mp_srcptr xp, mp_size_t xsize, C mp_srcptr yp, mp_size_t ysize); C C This routine is essentially the same as mpn/generic/mul_basecase.c, but C it's faster because it does most of the mpn_addmul_1() startup C calculations only once. ifdef(`PIC',` deflit(UNROLL_THRESHOLD, 5) ',` deflit(UNROLL_THRESHOLD, 5) ') defframe(PARAM_YSIZE,20) defframe(PARAM_YP, 16) defframe(PARAM_XSIZE,12) defframe(PARAM_XP, 8) defframe(PARAM_WP, 4) TEXT ALIGN(16) PROLOGUE(mpn_mul_basecase) deflit(`FRAME',0) movl PARAM_XSIZE, %ecx movl PARAM_YP, %eax movl PARAM_XP, %edx movl (%eax), %eax C yp[0] cmpl $2, %ecx ja L(xsize_more_than_two) je L(two_by_something) C one limb by one limb mull (%edx) movl PARAM_WP, %ecx movl %eax, (%ecx) movl %edx, 4(%ecx) ret C ----------------------------------------------------------------------------- L(two_by_something): deflit(`FRAME',0) dnl re-use parameter space define(SAVE_EBX, `PARAM_XSIZE') define(SAVE_ESI, `PARAM_YSIZE') movl %ebx, SAVE_EBX cmpl $1, PARAM_YSIZE movl %eax, %ecx C yp[0] movl %esi, SAVE_ESI C save esi movl PARAM_WP, %ebx movl %edx, %esi C xp movl (%edx), %eax C xp[0] jne L(two_by_two) C two limbs by one limb C C eax xp[0] C ebx wp C ecx yp[0] C edx C esi xp mull %ecx movl %eax, (%ebx) movl 4(%esi), %eax movl %edx, %esi C carry mull %ecx addl %eax, %esi movl %esi, 4(%ebx) movl SAVE_ESI, %esi adcl $0, %edx movl %edx, 8(%ebx) movl SAVE_EBX, %ebx ret C ----------------------------------------------------------------------------- ALIGN(16) L(two_by_two): C eax xp[0] C ebx wp C ecx yp[0] C edx C esi xp C edi C ebp dnl more parameter space re-use define(SAVE_EDI, `PARAM_WP') mull %ecx C xp[0] * yp[0] movl %edi, SAVE_EDI movl %edx, %edi C carry, for wp[1] movl %eax, (%ebx) movl 4(%esi), %eax mull %ecx C xp[1] * yp[0] addl %eax, %edi movl PARAM_YP, %ecx adcl $0, %edx movl 4(%ecx), %ecx C yp[1] movl %edi, 4(%ebx) movl 4(%esi), %eax C xp[1] movl %edx, %edi C carry, for wp[2] mull %ecx C xp[1] * yp[1] addl %eax, %edi movl (%esi), %eax C xp[0] adcl $0, %edx movl %edx, %esi C carry, for wp[3] mull %ecx C xp[0] * yp[1] addl %eax, 4(%ebx) movl %esi, %eax adcl %edx, %edi movl SAVE_ESI, %esi movl %edi, 8(%ebx) adcl $0, %eax movl SAVE_EDI, %edi movl %eax, 12(%ebx) movl SAVE_EBX, %ebx ret C ----------------------------------------------------------------------------- ALIGN(16) L(xsize_more_than_two): C The first limb of yp is processed with a simple mpn_mul_1 loop running at C about 6.2 c/l. Unrolling this doesn't seem worthwhile since it's only run C once (whereas the addmul_1 below is run ysize-1 many times). A call to C mpn_mul_1 would be slowed down by the parameter pushing and popping etc, C and doesn't seem likely to be worthwhile on the typical sizes reaching C here from the Karatsuba code. C eax yp[0] C ebx C ecx xsize C edx xp C esi C edi C ebp defframe(`SAVE_EBX', -4) defframe(`SAVE_ESI', -8) defframe(`SAVE_EDI', -12) defframe(`SAVE_EBP', -16) defframe(VAR_COUNTER, -20) dnl for use in the unroll case defframe(VAR_ADJUST, -24) defframe(VAR_JMP, -28) defframe(VAR_SWAP, -32) defframe(VAR_XP_LOW, -36) deflit(STACK_SPACE, 36) subl $STACK_SPACE, %esp deflit(`FRAME',STACK_SPACE) movl %edi, SAVE_EDI movl PARAM_WP, %edi movl %ebx, SAVE_EBX movl %ebp, SAVE_EBP movl %eax, %ebp movl %esi, SAVE_ESI xorl %ebx, %ebx leal (%edx,%ecx,4), %esi C xp end leal (%edi,%ecx,4), %edi C wp end of mul1 negl %ecx L(mul1): C eax scratch C ebx carry C ecx counter, negative C edx scratch C esi xp end C edi wp end of mul1 C ebp multiplier movl (%esi,%ecx,4), %eax mull %ebp addl %ebx, %eax movl %eax, (%edi,%ecx,4) movl $0, %ebx adcl %edx, %ebx incl %ecx jnz L(mul1) movl PARAM_YSIZE, %edx movl %ebx, (%edi) C final carry movl PARAM_XSIZE, %ecx decl %edx jz L(done) C if ysize==1 cmpl $UNROLL_THRESHOLD, %ecx movl PARAM_YP, %eax jae L(unroll) C ----------------------------------------------------------------------------- C simple addmul looping C C eax yp C ebx C ecx xsize C edx ysize-1 C esi xp end C edi wp end of mul1 C ebp leal 4(%eax,%edx,4), %ebp C yp end negl %ecx negl %edx movl %edx, PARAM_YSIZE C -(ysize-1) movl (%esi,%ecx,4), %eax C xp low limb incl %ecx movl %ecx, PARAM_XSIZE C -(xsize-1) xorl %ebx, %ebx C initial carry movl %ebp, PARAM_YP movl (%ebp,%edx,4), %ebp C yp second lowest limb - multiplier jmp L(simple_outer_entry) L(simple_outer_top): C ebp ysize counter, negative movl PARAM_YP, %edx movl PARAM_XSIZE, %ecx C -(xsize-1) xorl %ebx, %ebx C carry movl %ebp, PARAM_YSIZE addl $4, %edi C next position in wp movl (%edx,%ebp,4), %ebp C yp limb - multiplier movl -4(%esi,%ecx,4), %eax C xp low limb L(simple_outer_entry): L(simple_inner_top): C eax xp limb C ebx carry limb C ecx loop counter (negative) C edx scratch C esi xp end C edi wp end C ebp multiplier mull %ebp addl %eax, %ebx adcl $0, %edx addl %ebx, (%edi,%ecx,4) movl (%esi,%ecx,4), %eax adcl $0, %edx incl %ecx movl %edx, %ebx jnz L(simple_inner_top) C separate code for last limb so outer loop counter handling can be C interleaved mull %ebp movl PARAM_YSIZE, %ebp addl %eax, %ebx adcl $0, %edx addl %ebx, (%edi) adcl $0, %edx incl %ebp movl %edx, 4(%edi) jnz L(simple_outer_top) L(done): movl SAVE_EBX, %ebx movl SAVE_ESI, %esi movl SAVE_EDI, %edi movl SAVE_EBP, %ebp addl $FRAME, %esp ret C ----------------------------------------------------------------------------- C C The unrolled loop is the same as in mpn_addmul_1, see that code for some C comments. C C VAR_ADJUST is the negative of how many limbs the leals in the inner loop C increment xp and wp. This is used to adjust xp and wp, and is rshifted to C given an initial VAR_COUNTER at the top of the outer loop. C C VAR_COUNTER is for the unrolled loop, running from VAR_ADJUST/UNROLL_COUNT C up to -1, inclusive. C C VAR_JMP is the computed jump into the unrolled loop. C C VAR_SWAP is 0 if xsize odd or 0xFFFFFFFF if xsize even, used to swap the C initial ebx and ecx on entry to the unrolling. C C VAR_XP_LOW is the least significant limb of xp, which is needed at the C start of the unrolled loop. C C PARAM_YSIZE is the outer loop counter, going from -(ysize-1) up to -1, C inclusive. C C PARAM_YP is offset appropriately so that the PARAM_YSIZE counter can be C added to give the location of the next limb of yp, which is the multiplier C in the unrolled loop. C C The trick with the VAR_ADJUST value means it's only necessary to do one C fetch in the outer loop to take care of xp, wp and the inner loop counter. L(unroll): C eax yp C ebx C ecx xsize C edx ysize-1 C esi xp end C edi wp end of mul1 C ebp movl PARAM_XP, %esi movl 4(%eax), %ebp C multiplier (yp second limb) leal 4(%eax,%edx,4), %eax C yp adjust for ysize indexing movl %eax, PARAM_YP movl PARAM_WP, %edi negl %edx movl %edx, PARAM_YSIZE leal UNROLL_COUNT-2(%ecx), %ebx C (xsize-1)+UNROLL_COUNT-1 decl %ecx C xsize-1 movl (%esi), %eax C xp low limb andl $-UNROLL_MASK-1, %ebx negl %ecx C -(xsize-1) negl %ebx andl $UNROLL_MASK, %ecx movl %ebx, VAR_ADJUST movl %ecx, %edx shll $4, %ecx movl %eax, VAR_XP_LOW sarl $UNROLL_LOG2, %ebx negl %edx C 15 code bytes per limb ifdef(`PIC',` call L(pic_calc) L(unroll_here): ',` leal L(unroll_inner_entry) (%ecx,%edx,1), %ecx ') movl %ecx, VAR_JMP movl %edx, %ecx shll $31, %edx sarl $31, %edx C 0 or -1 as xsize odd or even leal 4(%edi,%ecx,4), %edi C wp and xp, adjust for unrolling, leal 4(%esi,%ecx,4), %esi C and start at second limb movl %edx, VAR_SWAP jmp L(unroll_outer_entry) ifdef(`PIC',` L(pic_calc): C See mpn/x86/README about old gas bugs leal (%ecx,%edx,1), %ecx addl $L(unroll_inner_entry)-L(unroll_here), %ecx addl (%esp), %ecx ret_internal ') C -------------------------------------------------------------------------- ALIGN(16) L(unroll_outer_top): C eax C ebx C ecx C edx C esi xp + offset C edi wp + offset C ebp ysize counter, negative movl VAR_ADJUST, %ebx movl PARAM_YP, %edx movl VAR_XP_LOW, %eax movl %ebp, PARAM_YSIZE C store incremented ysize counter leal eval(UNROLL_BYTES + 4) (%edi,%ebx,4), %edi leal (%esi,%ebx,4), %esi sarl $UNROLL_LOG2, %ebx movl (%edx,%ebp,4), %ebp C yp next multiplier L(unroll_outer_entry): mull %ebp movl %ebx, VAR_COUNTER movl %edx, %ebx C carry high movl %eax, %ecx C carry low xorl %edx, %eax movl VAR_JMP, %edx andl VAR_SWAP, %eax xorl %eax, %ebx C carries other way for odd index xorl %eax, %ecx jmp *%edx C ----------------------------------------------------------------------------- L(unroll_inner_top): C eax xp limb C ebx carry high C ecx carry low C edx scratch C esi xp+8 C edi wp C ebp yp multiplier limb C C VAR_COUNTER loop counter, negative C C 15 bytes each limb addl $UNROLL_BYTES, %edi L(unroll_inner_entry): deflit(CHUNK_COUNT,2) forloop(`i', 0, UNROLL_COUNT/CHUNK_COUNT-1, ` deflit(`disp0', eval(i*CHUNK_COUNT*4 ifelse(UNROLL_BYTES,256,-128))) deflit(`disp1', eval(disp0 + 4)) Zdisp( movl, disp0,(%esi), %eax) mull %ebp Zdisp( addl, %ecx, disp0,(%edi)) adcl %eax, %ebx C new carry low movl %edx, %ecx adcl $0, %ecx C new carry high movl disp1(%esi), %eax mull %ebp addl %ebx, disp1(%edi) adcl %eax, %ecx C new carry low movl %edx, %ebx adcl $0, %ebx C new carry high ') incl VAR_COUNTER leal UNROLL_BYTES(%esi), %esi jnz L(unroll_inner_top) C eax C ebx carry high C ecx carry low C edx C esi C edi wp, pointing at second last limb) C ebp deflit(`disp0', eval(UNROLL_BYTES ifelse(UNROLL_BYTES,256,-128))) deflit(`disp1', eval(disp0 + 4)) movl PARAM_YSIZE, %ebp addl %ecx, disp0(%edi) C carry low adcl $0, %ebx incl %ebp movl %ebx, disp1(%edi) C carry high jnz L(unroll_outer_top) movl SAVE_ESI, %esi movl SAVE_EBP, %ebp movl SAVE_EDI, %edi movl SAVE_EBX, %ebx addl $FRAME, %esp ret EPILOGUE()