write new toom eval for +-1 using addadd and sumdiff
This commit is contained in:
parent
bb009d186b
commit
1f133530f1
@ -1,79 +1,61 @@
|
||||
/* mpn_toom_eval_pm1 -- Evaluate a polynomial in +1 and -1
|
||||
/* toom_eval_pm1
|
||||
|
||||
Contributed to the GNU project by Niels Möller
|
||||
Copyright 2011 The Code Cavern
|
||||
|
||||
THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE. IT IS ONLY
|
||||
SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST
|
||||
GUARANTEED THAT IT WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
|
||||
This file is part of the MPIR Library.
|
||||
|
||||
Copyright 2009 Free Software Foundation, Inc.
|
||||
The MPIR Library is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published
|
||||
by the Free Software Foundation; either version 2.1 of the License, or (at
|
||||
your option) any later version.
|
||||
|
||||
This file is part of the GNU MP Library.
|
||||
|
||||
The GNU MP Library is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published by
|
||||
the Free Software Foundation; either version 3 of the License, or (at your
|
||||
option) any later version.
|
||||
|
||||
The GNU MP Library is distributed in the hope that it will be useful, but
|
||||
The MPIR Library is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
||||
License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. */
|
||||
|
||||
along with the MPIR Library; see the file COPYING.LIB. If not, write
|
||||
to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
||||
Boston, MA 02110-1301, USA.
|
||||
*/
|
||||
|
||||
#include "mpir.h"
|
||||
#include "gmp-impl.h"
|
||||
|
||||
/* Evaluates a polynomial of degree k > 3, in the points +1 and -1. */
|
||||
int
|
||||
mpn_toom_eval_pm1 (mp_ptr xp1, mp_ptr xm1, unsigned k,
|
||||
mp_srcptr xp, mp_size_t n, mp_size_t hn, mp_ptr tp)
|
||||
{
|
||||
unsigned i;
|
||||
int neg;
|
||||
// k degree poly so have k+1 coeffs and first k are size n
|
||||
// k>3 so we can do the first add unconditionally
|
||||
int mpn_toom_eval_pm1(mp_ptr pp,mp_ptr mp,unsigned int k,mp_srcptr xp,mp_size_t n,mp_size_t m,mp_ptr tp)
|
||||
{int isneg=0;unsigned int i;
|
||||
|
||||
ASSERT (k >= 4);
|
||||
|
||||
ASSERT (hn > 0);
|
||||
ASSERT (hn <= n);
|
||||
|
||||
/* The degree k is also the number of full-size coefficients, so
|
||||
* that last coefficient, of size hn, starts at xp + k*n. */
|
||||
|
||||
xp1[n] = mpn_add_n (xp1, xp, xp + 2*n, n);
|
||||
for (i = 4; i < k; i += 2)
|
||||
ASSERT_NOCARRY (mpn_add (xp1, xp1, n+1, xp+i*n, n));
|
||||
|
||||
tp[n] = mpn_add_n (tp, xp + n, xp + 3*n, n);
|
||||
for (i = 5; i < k; i += 2)
|
||||
ASSERT_NOCARRY (mpn_add (tp, tp, n+1, xp+i*n, n));
|
||||
|
||||
if (k & 1)
|
||||
ASSERT_NOCARRY (mpn_add (tp, tp, n+1, xp+k*n, hn));
|
||||
else
|
||||
ASSERT_NOCARRY (mpn_add (xp1, xp1, n+1, xp+k*n, hn));
|
||||
|
||||
neg = (mpn_cmp (xp1, tp, n + 1) < 0) ? ~0 : 0;
|
||||
|
||||
#if HAVE_NATIVE_mpn_add_n_sub_n
|
||||
if (neg)
|
||||
mpn_add_n_sub_n (xp1, xm1, tp, xp1, n + 1);
|
||||
else
|
||||
mpn_add_n_sub_n (xp1, xm1, xp1, tp, n + 1);
|
||||
#else
|
||||
if (neg)
|
||||
mpn_sub_n (xm1, tp, xp1, n + 1);
|
||||
else
|
||||
mpn_sub_n (xm1, xp1, tp, n + 1);
|
||||
|
||||
mpn_add_n (xp1, xp1, tp, n + 1);
|
||||
ASSERT(k>3);ASSERT(n>=m);ASSERT(m>0);ASSERT_MPN(xp,n*k+m);
|
||||
//ASSERT_SPACE(pp,n+1);ASSERT_SPACE(mp,n+1);ASSERT_SPACE(tp,n+1);
|
||||
ASSERT(!MPN_OVERLAP_P(pp,n+1,mp,n+1));ASSERT(!MPN_OVERLAP_P(pp,n+1,xp,n*k+m));ASSERT(!MPN_OVERLAP_P(pp,n+1,tp,n+1));
|
||||
ASSERT(!MPN_OVERLAP_P(mp,n+1,xp,n*k+m));ASSERT(!MPN_OVERLAP_P(xp,n*k+m,tp,n+1));
|
||||
#if ! HAVE_NATIVE_mpn_sumdiff_n
|
||||
ASSERT(!MPN_OVERLAP_P(mp,n+1,tp,n+1));
|
||||
#endif
|
||||
|
||||
ASSERT (xp1[n] <= k);
|
||||
ASSERT (xm1[n] <= k/2 + 1);
|
||||
|
||||
return neg;
|
||||
}
|
||||
#if HAVE_NATIVE_mpn_addadd_n
|
||||
if(k==4){pp[n]=mpn_add_n(pp,xp,xp+2*n,n);tp[n]=mpn_add_n(tp,xp+n,xp+3*n,n);}else
|
||||
if(k==5){pp[n]=mpn_addadd_n(pp,xp,xp+2*n,xp+4*n,n);tp[n]=mpn_add_n(tp,xp+n,xp+3*n,n);}else
|
||||
{pp[n]=mpn_addadd_n(pp,xp,xp+2*n,xp+4*n,n);tp[n]=mpn_addadd_n(tp,xp+n,xp+3*n,xp+5*n,n);
|
||||
for(i=7;i<k-2;i+=4){pp[n]+=mpn_addadd_n(pp,pp,xp+(i-1)*n,xp+(i+1)*n,n);tp[n]+=mpn_addadd_n(tp,tp,xp+i*n,xp+(i+2)*n,n);}
|
||||
if(k%4==3){pp[n]+=mpn_add_n(pp,pp,xp+(k-1)*n,n);}
|
||||
if(k%4==0){pp[n]+=mpn_add_n(pp,pp,xp+(k-2)*n,n);tp[n]+=mpn_add_n(tp,tp,xp+(k-1)*n,n);}
|
||||
if(k%4==1){pp[n]+=mpn_addadd_n(pp,pp,xp+(k-3)*n,xp+(k-1)*n,n);tp[n]+=mpn_add_n(tp,tp,xp+(k-2)*n,n);}}
|
||||
if(k%2==0){pp[n]+=mpn_add(pp,pp,n,xp+k*n,m);}else{tp[n]+=mpn_add(tp,tp,n,xp+k*n,m);}
|
||||
#else
|
||||
// pp is xp+0 xp+2n xp+4n xp+6n ... xp+jn where j<=k-1
|
||||
// mp is xp+1 xp+3n xp+5n xp+7n ... xp+jn where j<=k-1
|
||||
pp[n]=mpn_add_n(pp,xp,xp+2*n,n);tp[n]=mpn_add_n(tp,xp+n,xp+3*n,n);
|
||||
for(i=5;i<k;i+=2){pp[n]+=mpn_add_n(pp,pp,xp+(i-1)*n,n);tp[n]+=mpn_add_n(tp,tp,xp+i*n,n);}
|
||||
if(k%2==1){pp[n]+=mpn_add_n(pp,pp,xp+(k-1)*n,n);tp[n]+=mpn_add(tp,tp,n,xp+k*n,m);}else{pp[n]+=mpn_add(pp,pp,n,xp+k*n,m);}
|
||||
#endif
|
||||
if(mpn_cmp(tp,pp,n+1)>0)isneg=-1;
|
||||
#if HAVE_NATIVE_mpn_sumdiff_n
|
||||
if(isneg==0){mpn_sumdiff_n(pp,mp,pp,tp,n+1);}else{mpn_sumdiff_n(pp,mp,tp,pp,n+1);}
|
||||
#else
|
||||
if(isneg==0){mpn_sub_n(mp,pp,tp,n+1);}else{mpn_sub_n(mp,tp,pp,n+1);}
|
||||
mpn_add_n(pp,pp,tp,n+1);
|
||||
#endif
|
||||
return isneg;}
|
||||
|
Loading…
Reference in New Issue
Block a user