256 lines
7.0 KiB
C
256 lines
7.0 KiB
C
|
/* hgcd_matrix.c.
|
||
|
|
||
|
THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES. IT IS ONLY
|
||
|
SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST
|
||
|
GUARANTEED THAT THEY'LL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
|
||
|
|
||
|
Copyright 2003, 2004, 2005, 2008, 2012 Free Software Foundation, Inc.
|
||
|
|
||
|
This file is part of the GNU MP Library.
|
||
|
|
||
|
The GNU MP Library is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU Lesser General Public License as published by
|
||
|
the Free Software Foundation; either version 3 of the License, or (at your
|
||
|
option) any later version.
|
||
|
|
||
|
The GNU MP Library is distributed in the hope that it will be useful, but
|
||
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
||
|
License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU Lesser General Public License
|
||
|
along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. */
|
||
|
|
||
|
#include "gmp.h"
|
||
|
#include "gmp-impl.h"
|
||
|
#include "longlong.h"
|
||
|
|
||
|
/* For input of size n, matrix elements are of size at most ceil(n/2)
|
||
|
- 1, but we need two limbs extra. */
|
||
|
void
|
||
|
mpn_hgcd_matrix_init (struct hgcd_matrix *M, mp_size_t n, mp_ptr p)
|
||
|
{
|
||
|
mp_size_t s = (n+1)/2 + 1;
|
||
|
M->alloc = s;
|
||
|
M->n = 1;
|
||
|
MPN_ZERO (p, 4 * s);
|
||
|
M->p[0][0] = p;
|
||
|
M->p[0][1] = p + s;
|
||
|
M->p[1][0] = p + 2 * s;
|
||
|
M->p[1][1] = p + 3 * s;
|
||
|
|
||
|
M->p[0][0][0] = M->p[1][1][0] = 1;
|
||
|
}
|
||
|
|
||
|
/* Update column COL, adding in Q * column (1-COL). Temporary storage:
|
||
|
* qn + n <= M->alloc, where n is the size of the largest element in
|
||
|
* column 1 - COL. */
|
||
|
void
|
||
|
mpn_hgcd_matrix_update_q (struct hgcd_matrix *M, mp_srcptr qp, mp_size_t qn,
|
||
|
unsigned col, mp_ptr tp)
|
||
|
{
|
||
|
ASSERT (col < 2);
|
||
|
|
||
|
if (qn == 1)
|
||
|
{
|
||
|
mp_limb_t q = qp[0];
|
||
|
mp_limb_t c0, c1;
|
||
|
|
||
|
c0 = mpn_addmul_1 (M->p[0][col], M->p[0][1-col], M->n, q);
|
||
|
c1 = mpn_addmul_1 (M->p[1][col], M->p[1][1-col], M->n, q);
|
||
|
|
||
|
M->p[0][col][M->n] = c0;
|
||
|
M->p[1][col][M->n] = c1;
|
||
|
|
||
|
M->n += (c0 | c1) != 0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
unsigned row;
|
||
|
|
||
|
/* Carries for the unlikely case that we get both high words
|
||
|
from the multiplication and carries from the addition. */
|
||
|
mp_limb_t c[2];
|
||
|
mp_size_t n;
|
||
|
|
||
|
/* The matrix will not necessarily grow in size by qn, so we
|
||
|
need normalization in order not to overflow M. */
|
||
|
|
||
|
for (n = M->n; n + qn > M->n; n--)
|
||
|
{
|
||
|
ASSERT (n > 0);
|
||
|
if (M->p[0][1-col][n-1] > 0 || M->p[1][1-col][n-1] > 0)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
ASSERT (qn + n <= M->alloc);
|
||
|
|
||
|
for (row = 0; row < 2; row++)
|
||
|
{
|
||
|
if (qn <= n)
|
||
|
mpn_mul (tp, M->p[row][1-col], n, qp, qn);
|
||
|
else
|
||
|
mpn_mul (tp, qp, qn, M->p[row][1-col], n);
|
||
|
|
||
|
ASSERT (n + qn >= M->n);
|
||
|
c[row] = mpn_add (M->p[row][col], tp, n + qn, M->p[row][col], M->n);
|
||
|
}
|
||
|
|
||
|
n += qn;
|
||
|
|
||
|
if (c[0] | c[1])
|
||
|
{
|
||
|
M->p[0][col][n] = c[0];
|
||
|
M->p[1][col][n] = c[1];
|
||
|
n++;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
n -= (M->p[0][col][n-1] | M->p[1][col][n-1]) == 0;
|
||
|
ASSERT (n >= M->n);
|
||
|
}
|
||
|
M->n = n;
|
||
|
}
|
||
|
|
||
|
ASSERT (M->n < M->alloc);
|
||
|
}
|
||
|
|
||
|
/* Multiply M by M1 from the right. Since the M1 elements fit in
|
||
|
GMP_NUMB_BITS - 1 bits, M grows by at most one limb. Needs
|
||
|
temporary space M->n */
|
||
|
void
|
||
|
mpn_hgcd_matrix_mul_1 (struct hgcd_matrix *M, const struct hgcd_matrix1 *M1,
|
||
|
mp_ptr tp)
|
||
|
{
|
||
|
mp_size_t n0, n1;
|
||
|
|
||
|
/* Could avoid copy by some swapping of pointers. */
|
||
|
MPN_COPY (tp, M->p[0][0], M->n);
|
||
|
n0 = mpn_hgcd_mul_matrix1_vector (M1, M->p[0][0], tp, M->p[0][1], M->n);
|
||
|
MPN_COPY (tp, M->p[1][0], M->n);
|
||
|
n1 = mpn_hgcd_mul_matrix1_vector (M1, M->p[1][0], tp, M->p[1][1], M->n);
|
||
|
|
||
|
/* Depends on zero initialization */
|
||
|
M->n = MAX(n0, n1);
|
||
|
ASSERT (M->n < M->alloc);
|
||
|
}
|
||
|
|
||
|
/* Multiply M by M1 from the right. Needs 3*(M->n + M1->n) + 5 limbs
|
||
|
of temporary storage (see mpn_matrix22_mul_itch). */
|
||
|
void
|
||
|
mpn_hgcd_matrix_mul (struct hgcd_matrix *M, const struct hgcd_matrix *M1,
|
||
|
mp_ptr tp)
|
||
|
{
|
||
|
mp_size_t n;
|
||
|
|
||
|
/* About the new size of M:s elements. Since M1's diagonal elements
|
||
|
are > 0, no element can decrease. The new elements are of size
|
||
|
M->n + M1->n, one limb more or less. The computation of the
|
||
|
matrix product produces elements of size M->n + M1->n + 1. But
|
||
|
the true size, after normalization, may be three limbs smaller.
|
||
|
|
||
|
The reason that the product has normalized size >= M->n + M1->n -
|
||
|
2 is subtle. It depends on the fact that M and M1 can be factored
|
||
|
as products of (1,1; 0,1) and (1,0; 1,1), and that we can't have
|
||
|
M ending with a large power and M1 starting with a large power of
|
||
|
the same matrix. */
|
||
|
|
||
|
/* FIXME: Strassen multiplication gives only a small speedup. In FFT
|
||
|
multiplication range, this function could be sped up quite a lot
|
||
|
using invariance. */
|
||
|
ASSERT (M->n + M1->n < M->alloc);
|
||
|
|
||
|
ASSERT ((M->p[0][0][M->n-1] | M->p[0][1][M->n-1]
|
||
|
| M->p[1][0][M->n-1] | M->p[1][1][M->n-1]) > 0);
|
||
|
|
||
|
ASSERT ((M1->p[0][0][M1->n-1] | M1->p[0][1][M1->n-1]
|
||
|
| M1->p[1][0][M1->n-1] | M1->p[1][1][M1->n-1]) > 0);
|
||
|
|
||
|
mpn_matrix22_mul (M->p[0][0], M->p[0][1],
|
||
|
M->p[1][0], M->p[1][1], M->n,
|
||
|
M1->p[0][0], M1->p[0][1],
|
||
|
M1->p[1][0], M1->p[1][1], M1->n, tp);
|
||
|
|
||
|
/* Index of last potentially non-zero limb, size is one greater. */
|
||
|
n = M->n + M1->n;
|
||
|
|
||
|
n -= ((M->p[0][0][n] | M->p[0][1][n] | M->p[1][0][n] | M->p[1][1][n]) == 0);
|
||
|
n -= ((M->p[0][0][n] | M->p[0][1][n] | M->p[1][0][n] | M->p[1][1][n]) == 0);
|
||
|
n -= ((M->p[0][0][n] | M->p[0][1][n] | M->p[1][0][n] | M->p[1][1][n]) == 0);
|
||
|
|
||
|
ASSERT ((M->p[0][0][n] | M->p[0][1][n] | M->p[1][0][n] | M->p[1][1][n]) > 0);
|
||
|
|
||
|
M->n = n + 1;
|
||
|
}
|
||
|
|
||
|
/* Multiplies the least significant p limbs of (a;b) by M^-1.
|
||
|
Temporary space needed: 2 * (p + M->n)*/
|
||
|
mp_size_t
|
||
|
mpn_hgcd_matrix_adjust (const struct hgcd_matrix *M,
|
||
|
mp_size_t n, mp_ptr ap, mp_ptr bp,
|
||
|
mp_size_t p, mp_ptr tp)
|
||
|
{
|
||
|
/* M^-1 (a;b) = (r11, -r01; -r10, r00) (a ; b)
|
||
|
= (r11 a - r01 b; - r10 a + r00 b */
|
||
|
|
||
|
mp_ptr t0 = tp;
|
||
|
mp_ptr t1 = tp + p + M->n;
|
||
|
mp_limb_t ah, bh;
|
||
|
mp_limb_t cy;
|
||
|
|
||
|
ASSERT (p + M->n < n);
|
||
|
|
||
|
/* First compute the two values depending on a, before overwriting a */
|
||
|
|
||
|
if (M->n >= p)
|
||
|
{
|
||
|
mpn_mul (t0, M->p[1][1], M->n, ap, p);
|
||
|
mpn_mul (t1, M->p[1][0], M->n, ap, p);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mpn_mul (t0, ap, p, M->p[1][1], M->n);
|
||
|
mpn_mul (t1, ap, p, M->p[1][0], M->n);
|
||
|
}
|
||
|
|
||
|
/* Update a */
|
||
|
MPN_COPY (ap, t0, p);
|
||
|
ah = mpn_add (ap + p, ap + p, n - p, t0 + p, M->n);
|
||
|
|
||
|
if (M->n >= p)
|
||
|
mpn_mul (t0, M->p[0][1], M->n, bp, p);
|
||
|
else
|
||
|
mpn_mul (t0, bp, p, M->p[0][1], M->n);
|
||
|
|
||
|
cy = mpn_sub (ap, ap, n, t0, p + M->n);
|
||
|
ASSERT (cy <= ah);
|
||
|
ah -= cy;
|
||
|
|
||
|
/* Update b */
|
||
|
if (M->n >= p)
|
||
|
mpn_mul (t0, M->p[0][0], M->n, bp, p);
|
||
|
else
|
||
|
mpn_mul (t0, bp, p, M->p[0][0], M->n);
|
||
|
|
||
|
MPN_COPY (bp, t0, p);
|
||
|
bh = mpn_add (bp + p, bp + p, n - p, t0 + p, M->n);
|
||
|
cy = mpn_sub (bp, bp, n, t1, p + M->n);
|
||
|
ASSERT (cy <= bh);
|
||
|
bh -= cy;
|
||
|
|
||
|
if (ah > 0 || bh > 0)
|
||
|
{
|
||
|
ap[n] = ah;
|
||
|
bp[n] = bh;
|
||
|
n++;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* The subtraction can reduce the size by at most one limb. */
|
||
|
if (ap[n-1] == 0 && bp[n-1] == 0)
|
||
|
n--;
|
||
|
}
|
||
|
ASSERT (ap[n-1] > 0 || bp[n-1] > 0);
|
||
|
return n;
|
||
|
}
|