mpir/tests/misc.c

583 lines
13 KiB
C
Raw Normal View History

/* Miscellaneous test program support routines.
Copyright 2000, 2001, 2002, 2003, 2005 Free Software Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA. */
#include "config.h"
#include <ctype.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h> /* for getenv */
#include <string.h>
#if HAVE_FLOAT_H || defined( _MSC_VER ) /* BRG */
#include <float.h> /* for DBL_MANT_DIG */
#endif
#if TIME_WITH_SYS_TIME
# include <sys/time.h> /* for struct timeval */
# include <time.h>
#else
# if HAVE_SYS_TIME_H
# include <sys/time.h>
# else
# include <time.h>
# endif
#endif
#include "mpir.h"
#include "gmp-impl.h"
#include "tests.h"
/* The various tests setups and final checks, collected up together. */
void
tests_start (void)
{
/* don't buffer, so output is not lost if a test causes a segv etc */
setbuf (stdout, NULL);
setbuf (stderr, NULL);
tests_memory_start ();
tests_rand_start ();
}
void
tests_end (void)
{
tests_rand_end ();
tests_memory_end ();
}
void
tests_rand_start (void)
{
gmp_randstate_ptr rands;
char *perform_seed;
unsigned long seed;
if (__gmp_rands_initialized)
{
printf ("Please let tests_start() initialize the global __gmp_rands.\n");
printf ("ie. ensure that function is called before the first use of RANDS.\n");
abort ();
}
gmp_randinit_default (__gmp_rands);
__gmp_rands_initialized = 1;
rands = __gmp_rands;
perform_seed = getenv ("GMP_CHECK_RANDOMIZE");
if (perform_seed != NULL)
{
#ifdef HAVE_STRTOUL
seed = strtoul (perform_seed, 0, 0);
#else
/* This will not work right for seeds >= 2^31 on 64-bit machines.
Perhaps use atol unconditionally? Is that ubiquitous? */
seed = atoi (perform_seed);
#endif
if (! (seed == 0 || seed == 1))
{
printf ("Re-seeding with GMP_CHECK_RANDOMIZE=%lu\n", seed);
gmp_randseed_ui (rands, seed);
}
else
{
#if HAVE_GETTIMEOFDAY
struct timeval tv;
gettimeofday (&tv, NULL);
seed = tv.tv_sec ^ (tv.tv_usec << 12);
seed &= 0xffffffff;
#else
time_t tv;
time (&tv);
seed = tv;
#endif
gmp_randseed_ui (rands, seed);
printf ("Seed GMP_CHECK_RANDOMIZE=%lu (include this in bug reports)\n", seed);
}
fflush (stdout);
}
}
void
tests_rand_end (void)
{
RANDS_CLEAR ();
}
/* Only used if CPU calling conventions checking is available. */
mp_limb_t (*calling_conventions_function) _PROTO ((ANYARGS));
/* Return p advanced to the next multiple of "align" bytes. "align" must be
a power of 2. Care is taken not to assume sizeof(int)==sizeof(pointer).
Using "unsigned long" avoids a warning on hpux. */
void *
align_pointer (void *p, size_t align)
{
unsigned long d;
d = ((unsigned long) p) & (align-1);
d = (d != 0 ? align-d : 0);
return (void *) (((char *) p) + d);
}
/* Note that memory allocated with this function can never be freed, because
the start address of the block allocated is lost. */
void *
__gmp_allocate_func_aligned (size_t bytes, size_t align)
{
return align_pointer ((*__gmp_allocate_func) (bytes + align-1), align);
}
void *
__gmp_allocate_or_reallocate (void *ptr, size_t oldsize, size_t newsize)
{
if (ptr == NULL)
return (*__gmp_allocate_func) (newsize);
else
return (*__gmp_reallocate_func) (ptr, oldsize, newsize);
}
char *
__gmp_allocate_strdup (const char *s)
{
size_t len;
char *t;
len = strlen (s);
t = (*__gmp_allocate_func) (len+1);
memcpy (t, s, len+1);
return t;
}
char *
strtoupper (char *s_orig)
{
char *s;
for (s = s_orig; *s != '\0'; s++)
if (isascii (*s))
*s = toupper (*s);
return s_orig;
}
void
mpz_set_n (mpz_ptr z, mp_srcptr p, mp_size_t size)
{
ASSERT (size >= 0);
MPN_NORMALIZE (p, size);
MPZ_REALLOC (z, size);
MPN_COPY (PTR(z), p, size);
SIZ(z) = size;
}
void
mpz_init_set_n (mpz_ptr z, mp_srcptr p, mp_size_t size)
{
ASSERT (size >= 0);
MPN_NORMALIZE (p, size);
ALLOC(z) = MAX (size, 1);
PTR(z) = __GMP_ALLOCATE_FUNC_LIMBS (ALLOC(z));
SIZ(z) = size;
MPN_COPY (PTR(z), p, size);
}
/* Find least significant limb position where p1,size and p2,size differ. */
mp_size_t
mpn_diff_lowest (mp_srcptr p1, mp_srcptr p2, mp_size_t size)
{
mp_size_t i;
for (i = 0; i < size; i++)
if (p1[i] != p2[i])
return i;
/* no differences */
return -1;
}
/* Find most significant limb position where p1,size and p2,size differ. */
mp_size_t
mpn_diff_highest (mp_srcptr p1, mp_srcptr p2, mp_size_t size)
{
mp_size_t i;
for (i = size-1; i >= 0; i--)
if (p1[i] != p2[i])
return i;
/* no differences */
return -1;
}
/* Find least significant byte position where p1,size and p2,size differ. */
mp_size_t
byte_diff_lowest (const void *p1, const void *p2, mp_size_t size)
{
mp_size_t i;
for (i = 0; i < size; i++)
if (((const char *) p1)[i] != ((const char *) p2)[i])
return i;
/* no differences */
return -1;
}
/* Find most significant limb position where p1,size and p2,size differ. */
mp_size_t
byte_diff_highest (const void *p1, const void *p2, mp_size_t size)
{
mp_size_t i;
for (i = size-1; i >= 0; i--)
if (((const char *) p1)[i] != ((const char *) p2)[i])
return i;
/* no differences */
return -1;
}
void
mpz_set_str_or_abort (mpz_ptr z, const char *str, int base)
{
if (mpz_set_str (z, str, base) != 0)
{
fprintf (stderr, "ERROR: mpz_set_str failed\n");
fprintf (stderr, " str = \"%s\"\n", str);
fprintf (stderr, " base = %d\n", base);
abort();
}
}
void
mpq_set_str_or_abort (mpq_ptr q, const char *str, int base)
{
if (mpq_set_str (q, str, base) != 0)
{
fprintf (stderr, "ERROR: mpq_set_str failed\n");
fprintf (stderr, " str = \"%s\"\n", str);
fprintf (stderr, " base = %d\n", base);
abort();
}
}
void
mpf_set_str_or_abort (mpf_ptr f, const char *str, int base)
{
if (mpf_set_str (f, str, base) != 0)
{
fprintf (stderr, "ERROR mpf_set_str failed\n");
fprintf (stderr, " str = \"%s\"\n", str);
fprintf (stderr, " base = %d\n", base);
abort();
}
}
/* Whether the absolute value of z is a power of 2. */
int
mpz_pow2abs_p (mpz_srcptr z)
{
mp_size_t size, i;
mp_srcptr ptr;
size = SIZ (z);
if (size == 0)
return 0; /* zero is not a power of 2 */
size = ABS (size);
ptr = PTR (z);
for (i = 0; i < size-1; i++)
if (ptr[i] != 0)
return 0; /* non-zero low limb means not a power of 2 */
return POW2_P (ptr[i]); /* high limb power of 2 */
}
/* Exponentially distributed between 0 and 2^nbits-1, meaning the number of
bits in the result is uniformly distributed between 0 and nbits-1.
FIXME: This is not a proper exponential distribution, since the
probability function will have a stepped shape due to using a uniform
distribution after choosing how many bits. */
void
mpz_erandomb (mpz_ptr rop, gmp_randstate_t rstate, unsigned long nbits)
{
mpz_urandomb (rop, rstate, gmp_urandomm_ui (rstate, nbits));
}
void
mpz_erandomb_nonzero (mpz_ptr rop, gmp_randstate_t rstate, unsigned long nbits)
{
mpz_erandomb (rop, rstate, nbits);
if (mpz_sgn (rop) == 0)
mpz_set_ui (rop, 1L);
}
void
mpz_errandomb (mpz_ptr rop, gmp_randstate_t rstate, unsigned long nbits)
{
mpz_rrandomb (rop, rstate, gmp_urandomm_ui (rstate, nbits));
}
void
mpz_errandomb_nonzero (mpz_ptr rop, gmp_randstate_t rstate, unsigned long nbits)
{
mpz_errandomb (rop, rstate, nbits);
if (mpz_sgn (rop) == 0)
mpz_set_ui (rop, 1L);
}
void
mpz_negrandom (mpz_ptr rop, gmp_randstate_t rstate)
{
mp_limb_t n;
_gmp_rand (&n, rstate, 1);
if (n != 0)
mpz_neg (rop, rop);
}
mp_limb_t
urandom (void)
{
#if GMP_NAIL_BITS == 0
mp_limb_t n;
_gmp_rand (&n, RANDS, BITS_PER_MP_LIMB);
return n;
#else
mp_limb_t n[2];
_gmp_rand (n, RANDS, BITS_PER_MP_LIMB);
return n[0] + (n[1] << GMP_NUMB_BITS);
#endif
}
/* Call (*func)() with various random number generators. */
void
call_rand_algs (void (*func) __GMP_PROTO ((const char *, gmp_randstate_ptr)))
{
gmp_randstate_t rstate;
mpz_t a;
mpz_init (a);
gmp_randinit_default (rstate);
(*func) ("gmp_randinit_default", rstate);
gmp_randclear (rstate);
gmp_randinit_mt (rstate);
(*func) ("gmp_randinit_mt", rstate);
gmp_randclear (rstate);
gmp_randinit_lc_2exp_size (rstate, 8L);
(*func) ("gmp_randinit_lc_2exp_size 8", rstate);
gmp_randclear (rstate);
gmp_randinit_lc_2exp_size (rstate, 16L);
(*func) ("gmp_randinit_lc_2exp_size 16", rstate);
gmp_randclear (rstate);
gmp_randinit_lc_2exp_size (rstate, 128L);
(*func) ("gmp_randinit_lc_2exp_size 128", rstate);
gmp_randclear (rstate);
/* degenerate always zeros */
mpz_set_ui (a, 0L);
gmp_randinit_lc_2exp (rstate, a, 0L, 8L);
(*func) ("gmp_randinit_lc_2exp a=0 c=0 m=8", rstate);
gmp_randclear (rstate);
/* degenerate always FFs */
mpz_set_ui (a, 0L);
gmp_randinit_lc_2exp (rstate, a, 0xFFL, 8L);
(*func) ("gmp_randinit_lc_2exp a=0 c=0xFF m=8", rstate);
gmp_randclear (rstate);
mpz_clear (a);
}
/* Return +infinity if available, or 0 if not.
We don't want to use libm, so INFINITY or other system values are not
used here. */
double
tests_infinity_d (void)
{
#if _GMP_IEEE_FLOATS
union ieee_double_extract x;
x.s.exp = 2047;
x.s.manl = 0;
x.s.manh = 0;
x.s.sig = 0;
return x.d;
#else
return 0;
#endif
}
/* Return non-zero if d is an infinity (either positive or negative).
Don't want libm, so don't use isinf() or other system tests. */
int
tests_isinf (double d)
{
#if _GMP_IEEE_FLOATS
union ieee_double_extract x;
x.d = d;
return (x.s.exp == 2047 && x.s.manl == 0 && x.s.manh == 0);
#else
return 0;
#endif
}
/* Set the hardware floating point rounding mode. Same mode values as mpfr,
namely 0=nearest, 1=tozero, 2=up, 3=down. Return 1 if successful, 0 if
not. */
int
tests_hardware_setround (int mode)
{
#if HAVE_HOST_CPU_FAMILY_x86
int rc;
switch (mode) {
case 0: rc = 0; break; /* nearest */
case 1: rc = 3; break; /* tozero */
case 2: rc = 2; break; /* up */
case 3: rc = 1; break; /* down */
default:
return 0;
}
#if defined( _MSC_VER )
{ unsigned int cw;
_controlfp_s(&cw, 0, 0);
_controlfp_s(&cw, (cw & ~0xC00) | (rc << 10), _MCW_RC);
}
#else
x86_fldcw ((x86_fstcw () & ~0xC00) | (rc << 10));
#endif
return 1;
#endif
return 0;
}
/* Return the hardware floating point rounding mode, or -1 if unknown. */
int
tests_hardware_getround (void)
{
#if HAVE_HOST_CPU_FAMILY_x86
unsigned int cw;
#if defined( _MSC_VER )
_controlfp_s(&cw, 0, 0);
#else
cw = x86_fstcw();
#endif
switch ((cw & ~0xC00) >> 10) {
case 0: return 0; break; /* nearest */
case 1: return 3; break; /* down */
case 2: return 2; break; /* up */
case 3: return 1; break; /* tozero */
}
#endif
return -1;
}
/* tests_dbl_mant_bits() determines by experiment the number of bits in the
mantissa of a "double". If it's not possible to find a value (perhaps
due to the compiler optimizing too aggressively), then return 0.
This code is used rather than DBL_MANT_DIG from <float.h> since ancient
systems like SunOS don't have that file, and since one GNU/Linux ARM
system was seen where the float emulation seemed to have only 32 working
bits, not the 53 float.h claimed. */
int
tests_dbl_mant_bits (void)
{
static int n = -1;
volatile double x, y, d;
if (n != -1)
return n;
n = 1;
x = 2.0;
for (;;)
{
/* see if 2^(n+1)+1 can be formed without rounding, if so then
continue, if not then "n" is the answer */
y = x + 1.0;
d = y - x;
if (d != 1.0)
{
#if defined (DBL_MANT_DIG) && DBL_RADIX == 2
if (n != DBL_MANT_DIG)
printf ("Warning, tests_dbl_mant_bits got %d but DBL_MANT_DIG says %d\n", n, DBL_MANT_DIG);
#endif
break;
}
x *= 2;
n++;
if (n > 1000)
{
printf ("Oops, tests_dbl_mant_bits can't determine mantissa size\n");
n = 0;
break;
}
}
return n;
}
/* See tests_setjmp_sigfpe in tests.h. */
jmp_buf tests_sigfpe_target;
RETSIGTYPE
tests_sigfpe_handler (int sig)
{
longjmp (tests_sigfpe_target, 1);
}
void
tests_sigfpe_done (void)
{
signal (SIGFPE, SIG_DFL);
}