mpir/mpn/generic/ngcd.c

194 lines
4.7 KiB
C
Raw Normal View History

/* Sch<63>nhage's 1987 algorithm, reorganized into hgcd form
Copyright 2004, 2005 Niels M<EFBFBD>ller
This file is part of the MPIR Library.
The MPIR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License, or (at
your option) any later version.
The MPIR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPIR Library; see the file COPYING.LIB. If not, write
to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.
*/
#include <stdio.h> /* for NULL */
#include "mpir.h"
#include "gmp-impl.h"
#include "longlong.h"
/* For input of size n, matrix elements are of size at most ceil(n/2)
- 1, but we need one limb extra. */
void
mpn_ngcd_matrix_init (struct ngcd_matrix *M, mp_size_t n, mp_ptr p);
#define NHGCD_BASE_ITCH MPN_NGCD_STEP_ITCH
/* Reduces a,b until |a-b| fits in n/2 + 1 limbs. Constructs matrix M
with elements of size at most (n+1)/2 - 1. Returns new size of a,
b, or zero if no reduction is possible. */
static mp_size_t
nhgcd_base (mp_ptr ap, mp_ptr bp, mp_size_t n,
struct ngcd_matrix *M, mp_ptr tp);
/* Size analysis for nhgcd:
For the recursive calls, we have n1 <= ceil(n / 2). Then the
storage need is determined by the storage for the recursive call
computing M1, and ngcd_matrix_adjust and ngcd_matrix_mul calls that use M1
(after this, the storage needed for M1 can be recycled).
Let S(r) denote the required storage. For M1 we need 5 * ceil(n1/2)
= 5 * ceil(n/4), and for the ngcd_matrix_adjust call, we need n + 2. In
total, 5 * ceil(n/4) + n + 2 <= 9 ceil(n/4) + 2.
For the recursive call, we need S(n1) = S(ceil(n/2)).
S(n) <= 9*ceil(n/4) + 2 + S(ceil(n/2))
<= 9*(ceil(n/4) + ... + ceil(n/2^(1+k))) + 2k + S(ceil(n/2^k))
<= 9*(2 ceil(n/4) + k) + 2k + S(n/2^k)
<= 18 ceil(n/4) + 11k + S(n/2^k)
*/
mp_size_t
mpn_nhgcd_itch (mp_size_t n);
/* Reduces a,b until |a-b| fits in n/2 + 1 limbs. Constructs matrix M
with elements of size at most (n+1)/2 - 1. Returns new size of a,
b, or zero if no reduction is possible. */
mp_size_t
mpn_nhgcd (mp_ptr ap, mp_ptr bp, mp_size_t n,
struct ngcd_matrix *M, mp_ptr tp);
#define EVEN_P(x) (((x) & 1) == 0)
mp_size_t
mpn_ngcd (mp_ptr gp, mp_ptr ap, mp_size_t an, mp_ptr bp, mp_size_t n)
{
mp_size_t init_scratch;
mp_size_t scratch;
mp_ptr tp;
TMP_DECL;
ASSERT (an >= n);
if (BELOW_THRESHOLD (n, GCD_THRESHOLD))
return mpn_lgcd (gp, ap, an, bp, n);
init_scratch = MPN_NGCD_MATRIX_INIT_ITCH ((n+1)/2);
scratch = mpn_nhgcd_itch ((n+1)/2);
/* Space needed for mpn_ngcd_matrix_adjust */
if (scratch < 2*n)
scratch = 2*n;
TMP_MARK;
if (an + 1 > init_scratch + scratch)
tp = TMP_ALLOC_LIMBS (an + 1);
else
tp = TMP_ALLOC_LIMBS (init_scratch + scratch);
if (an > n)
{
mp_ptr rp = tp;
mp_ptr qp = rp + n;
mpn_tdiv_qr (qp, rp, 0, ap, an, bp, n);
MPN_COPY (ap, rp, n);
an = n;
MPN_NORMALIZE (ap, an);
if (an == 0)
{
MPN_COPY (gp, bp, n);
TMP_FREE;
return n;
}
}
while (ABOVE_THRESHOLD (n, GCD_THRESHOLD))
{
struct ngcd_matrix M;
mp_size_t p = n/2;
mp_size_t nn;
mpn_ngcd_matrix_init (&M, n - p, tp);
nn = mpn_nhgcd (ap + p, bp + p, n - p, &M, tp + init_scratch);
if (nn > 0)
/* Needs 2*(p + M->n) <= 2*(floor(n/2) + ceil(n/2) - 1)
= 2(n-1) */
n = mpn_ngcd_matrix_adjust (&M, p + nn, ap, bp, p, tp + init_scratch);
else
{
mp_size_t gn;
n = mpn_ngcd_subdiv_step (gp, &gn, ap, bp, n, tp);
if (n == 0)
{
TMP_FREE;
return gn;
}
}
}
ASSERT (ap[n-1] > 0 || bp[n-1] > 0);
#if 0
/* FIXME: We may want to use lehmer on some systems. */
n = mpn_ngcd_lehmer (gp, ap, bp, n, tp);
TMP_FREE;
return n;
#endif
if (ap[n-1] < bp[n-1])
MP_PTR_SWAP (ap, bp);
an = n;
MPN_NORMALIZE (bp, n);
if (n == 0)
{
MPN_COPY (gp, ap, an);
TMP_FREE;
return an;
}
if (EVEN_P (bp[0]))
{
/* Then a must be odd (since the calling convention implies that
there's no common factor of 2) */
ASSERT (!EVEN_P (ap[0]));
while (bp[0] == 0)
{
bp++;
n--;
}
if (EVEN_P(bp[0]))
{
int count;
count_trailing_zeros (count, bp[0]);
ASSERT_NOCARRY (mpn_rshift (bp, bp, n, count));
n -= (bp[n-1] == 0);
}
}
TMP_FREE;
return mpn_lgcd (gp, ap, an, bp, n);
}