mpir/tests/mpn/t-divebyBm1of.c

118 lines
3.0 KiB
C
Raw Normal View History

/* Test mpn_divexact_byBm1of
dnl Copyright 2009 Jason Moxham
dnl This file is part of the MPIR Library.
dnl The MPIR Library is free software; you can redistribute it and/or modify
dnl it under the terms of the GNU Lesser General Public License as published
dnl by the Free Software Foundation; either version 2.1 of the License, or (at
dnl your option) any later version.
dnl The MPIR Library is distributed in the hope that it will be useful, but
dnl WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
dnl or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
dnl License for more details.
dnl You should have received a copy of the GNU Lesser General Public License
dnl along with the MPIR Library; see the file COPYING.LIB. If not, write
dnl to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
dnl Boston, MA 02110-1301, USA.
*/
#include <stdio.h>
#include <stdlib.h>
#include "mpir.h"
#include "gmp-impl.h"
#include "longlong.h"
#include "tests.h"
#define DISP(xp,xn) do{int __t;printf("%s=",#xp);for(__t=(xn)-1;__t>=0;__t--)printf("%lX ",(xp)[__t]);printf("\n");}while(0)
int
main (void)
{
unsigned long n, c,j;
gmp_randstate_t rands;
mp_limb_t xp[10000], qp[10000], tp[10000], r1, r2, i, f;
tests_start ();
gmp_randinit_default(rands);
// where (xp,n) = (qp,n)*f -ret*B^n and 0 <= ret < f B=2^GMP_NUMB_BITS where f divides B-1
// this assumes we use a divexact algorithm , a bi-directional algorithm would give different results
// and so would a diveby3 type div without the correction
for (i = 1; i < 10000; i += 2)
{
if (GMP_NUMB_MAX % i != 0)
continue;
f = i;
for (j = 0; j < 2; j++)
{
f = GMP_NUMB_MAX / f;
for (n = 1; n < 100; n++)
{
for (c = 0; c < 10; c++)
{
mpn_randomb (xp, rands,n);
r1 = mpn_divexact_byBm1of (qp, xp, n, f, GMP_NUMB_MAX / f);
r2 = mpn_mul_1 (tp, qp, n, f);
if (r1 != r2)
{
printf ("mpn_divexact_byBm1of ret error\n");
abort ();
}
if (mpn_cmp (xp, tp, n) != 0)
{
printf ("mpn_divexact_byBm1of error\n");
abort ();
}
}
}
for (n = 2; n < 100; n++)
{
for (c = 0; c < 10; c++)
{
mpn_randomb (xp, rands,n);
xp[n] = mpn_mul_1 (xp, xp, n - 1, f);
r1 = mpn_divexact_byBm1of (qp, xp, n, f, GMP_NUMB_MAX / f);
r2 = mpn_mul_1 (tp, qp, n, f);
if (r1 != r2)
{
printf ("mpn_divexact_byBm1of ret error\n");
abort ();
}
if (mpn_cmp (xp, tp, n) != 0)
{
printf ("mpn_divexact_byBm1of error\n");
abort ();
}
}
}
for (n = 0; n < 100; n++)
{
umul_ppmm (xp[1], xp[0], f, n);
r1 = mpn_divexact_byBm1of (qp, xp, 2, f, GMP_NUMB_MAX / f);
r2 = mpn_mul_1 (tp, qp, 2, f);
if (r1 != r2)
{
printf ("mpn_divexact_byBm1of ret error\n");
abort ();
}
if (mpn_cmp (xp, tp, 2) != 0)
{
printf ("mpn_divexact_byBm1of error\n");
abort ();
}
}
}
}
gmp_randclear(rands);
tests_end ();
exit (0);
}