115 lines
3.3 KiB
C
115 lines
3.3 KiB
C
|
/* mpz_millerrabin(n,reps) -- An implementation of the probabilistic primality
|
||
|
test found in Knuth's Seminumerical Algorithms book. If the function
|
||
|
mpz_millerrabin() returns 0 then n is not prime. If it returns 1, then n is
|
||
|
'probably' prime. The probability of a false positive is (1/4)**reps, where
|
||
|
reps is the number of internal passes of the probabilistic algorithm. Knuth
|
||
|
indicates that 25 passes are reasonable.
|
||
|
|
||
|
THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY. THEY'RE ALMOST
|
||
|
CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN
|
||
|
FUTURE GNU MP RELEASES.
|
||
|
|
||
|
Copyright 1991, 1993, 1994, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2005 Free
|
||
|
Software Foundation, Inc. Contributed by John Amanatides.
|
||
|
|
||
|
This file is part of the GNU MP Library.
|
||
|
|
||
|
The GNU MP Library is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU Lesser General Public License as published by
|
||
|
the Free Software Foundation; either version 2.1 of the License, or (at your
|
||
|
option) any later version.
|
||
|
|
||
|
The GNU MP Library is distributed in the hope that it will be useful, but
|
||
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
||
|
License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU Lesser General Public License
|
||
|
along with the GNU MP Library; see the file COPYING.LIB. If not, write to
|
||
|
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
||
|
MA 02110-1301, USA. */
|
||
|
|
||
|
#include "gmp.h"
|
||
|
#include "gmp-impl.h"
|
||
|
|
||
|
static int millerrabin _PROTO ((mpz_srcptr n, mpz_srcptr nm1,
|
||
|
mpz_ptr x, mpz_ptr y,
|
||
|
mpz_srcptr q, unsigned long int k));
|
||
|
|
||
|
int
|
||
|
mpz_millerrabin (mpz_srcptr n, int reps)
|
||
|
{
|
||
|
int r;
|
||
|
mpz_t nm1, nm3, x, y, q;
|
||
|
unsigned long int k;
|
||
|
gmp_randstate_t rstate;
|
||
|
int is_prime;
|
||
|
TMP_DECL;
|
||
|
TMP_MARK;
|
||
|
|
||
|
MPZ_TMP_INIT (nm1, SIZ (n) + 1);
|
||
|
mpz_sub_ui (nm1, n, 1L);
|
||
|
|
||
|
MPZ_TMP_INIT (x, SIZ (n) + 1);
|
||
|
MPZ_TMP_INIT (y, 2 * SIZ (n)); /* mpz_powm_ui needs excessive memory!!! */
|
||
|
|
||
|
/* Perform a Fermat test. */
|
||
|
mpz_set_ui (x, 210L);
|
||
|
mpz_powm (y, x, nm1, n);
|
||
|
if (mpz_cmp_ui (y, 1L) != 0)
|
||
|
{
|
||
|
TMP_FREE;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
MPZ_TMP_INIT (q, SIZ (n));
|
||
|
|
||
|
/* Find q and k, where q is odd and n = 1 + 2**k * q. */
|
||
|
k = mpz_scan1 (nm1, 0L);
|
||
|
mpz_tdiv_q_2exp (q, nm1, k);
|
||
|
|
||
|
/* n-3 */
|
||
|
MPZ_TMP_INIT (nm3, SIZ (n) + 1);
|
||
|
mpz_sub_ui (nm3, n, 3L);
|
||
|
ASSERT (mpz_cmp_ui (nm3, 1L) >= 0);
|
||
|
|
||
|
gmp_randinit_default (rstate);
|
||
|
|
||
|
is_prime = 1;
|
||
|
for (r = 0; r < reps && is_prime; r++)
|
||
|
{
|
||
|
/* 2 to n-2 inclusive, don't want 1, 0 or -1 */
|
||
|
mpz_urandomm (x, rstate, nm3);
|
||
|
mpz_add_ui (x, x, 2L);
|
||
|
|
||
|
is_prime = millerrabin (n, nm1, x, y, q, k);
|
||
|
}
|
||
|
|
||
|
gmp_randclear (rstate);
|
||
|
|
||
|
TMP_FREE;
|
||
|
return is_prime;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
millerrabin (mpz_srcptr n, mpz_srcptr nm1, mpz_ptr x, mpz_ptr y,
|
||
|
mpz_srcptr q, unsigned long int k)
|
||
|
{
|
||
|
unsigned long int i;
|
||
|
|
||
|
mpz_powm (y, x, q, n);
|
||
|
|
||
|
if (mpz_cmp_ui (y, 1L) == 0 || mpz_cmp (y, nm1) == 0)
|
||
|
return 1;
|
||
|
|
||
|
for (i = 1; i < k; i++)
|
||
|
{
|
||
|
mpz_powm_ui (y, y, 2L, n);
|
||
|
if (mpz_cmp (y, nm1) == 0)
|
||
|
return 1;
|
||
|
if (mpz_cmp_ui (y, 1L) == 0)
|
||
|
return 0;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|