mpir/mpz/likely_prime_p.c

111 lines
3.4 KiB
C
Raw Normal View History

/*
Copyright 2009 Jason Moxham
This file is part of the MPIR Library.
The MPIR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License, or (at
your option) any later version.
The MPIR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPIR Library; see the file COPYING.LIB. If not, write
to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.
*/
#include "mpir.h"
#include "gmp-impl.h"
// could have another parameter to specify what likely means
// ie for factoring , for RSA
// or to state that we have allready done trial div
// could call it mpz_likely_composite_p then when true we could return more info about it , ie a factor
int
mpz_likely_prime_p (mpz_srcptr N, gmp_randstate_t STATE, unsigned long td)
{
int d, t, r;
mpz_t base, nm1, x, e, n;
ALLOC (n) = ALLOC (N);
SIZ (n) = ABSIZ (N);
PTR (n) = PTR (N); // fake up an absolute value that we dont have de-allocate
// algorithm dose not handle small values , get rid of them here
if (mpz_cmp_ui (n, 2) == 0 || mpz_cmp_ui (n, 3) == 0)
return 1;
if (mpz_cmp_ui (n, 5) < 0 || mpz_even_p (n))
return 0;
// for factoring purpoises
// we assume we know nothing about N ie it is a random integer
// therefore it has a good chance of factoring by small divisiors , so try trial division as its fast and it checks small divisors
// checking for other divisors is not worth it even if the test is fast as we have random integer so only small divisors are common
// enough , remember this is not exact so it doesn't matter if we miss a few divisors
#define LIM 255
for (d = 2; d <= LIM; d++)
{
if (mpz_divisible_ui_p (n, d))
{
if (mpz_cmp_ui (n, d) == 0)
return 1;
return 0;
}
}
if (mpz_cmp_ui (n, LIM * LIM) < 0)
return 1;
ASSERT (mpz_odd_p (n));
ASSERT (mpz_cmp_ui (n, 5) >= 0); // so we can choose a base
// now do strong pseudoprime test
// get random base , for now choose any size , later choose a small one
mpz_init (base);
mpz_init_set (nm1, n);
mpz_sub_ui (nm1, nm1, 1);
do
{
mpz_urandomm (base, STATE, nm1);
}
while (mpz_cmp_ui (base, 1) <= 0);
// so base is 2 to n-2 which implys n>=4 , only really want a small base , and ignore the rare base=n-1 condition etc
//printf("base is ");mpz_out_str(stdout,10,base);printf(" ");
mpz_init (e);
mpz_init (x);
t = mpz_scan1 (nm1, 0); // so 2^t divides nm1
ASSERT (t > 0);
mpz_tdiv_q_2exp (e, nm1, t); // so e=nm1/2^t
mpz_powm (x, base, e, n); // x=base^e mod n
mpz_clear (e);
mpz_clear (base);
if (mpz_cmp_ui (x, 1) == 0)
{
mpz_clear (nm1);
mpz_clear (x);
return 1;
}
if (mpz_cmp (x, nm1) == 0)
{
mpz_clear (nm1);
mpz_clear (x);
return 1;
}
for (r = 0, t = t - 1; t > 0; t--)
{
mpz_mul (x, x, x);
mpz_mod (x, x, n);
if (mpz_cmp (x, nm1) == 0)
{
r = 1;
break;
}
if (mpz_cmp_ui (x, 1) == 0)
break;
}
mpz_clear (nm1);
mpz_clear (x);
return r;
}