mpir/mpn/x86_64w/dive_1.asm

161 lines
4.1 KiB
NASM
Raw Normal View History

; Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
;
; This file is part of the GNU MP Library.
;
; The GNU MP Library is free software; you can redistribute it and/or
; modify it under the terms of the GNU Lesser General Public License as
; published by the Free Software Foundation; either version 2.1 of the
; License, or (at your option) any later version.
;
; The GNU MP Library is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
; Lesser General Public License for more details.
;
; You should have received a copy of the GNU Lesser General Public
; License along with the GNU MP Library; see the file COPYING.LIB. If
; not, write to the Free Software Foundation, Inc., 59 Temple Place -
; Suite 330, Boston, MA 02111-1307, USA.
;
; Adapted by Brian Gladman AMD64 using the Microsoft VC++ v8 64-bit
; compiler and the YASM assembler.
; AMD64 mpn_divexact_1 -- mpn by limb exact division
;
; Calling interface:
;
; void mpn_divexact_1(
; mp_ptr dst, rcx
; mp_srcptr src, rdx
; mp_size_t size, r8
; mp_limb_t divisor r9
; )
;
; since the inverse takes a while to setup,plain division is used for small
; Multiplying works out faster for size>=3 when the divisor is odd or size>=4
; when the divisor is even.
;
; This is an SEH Frame Function with a leaf prologue
%include "x86_64_asm.inc"
%define reg_save_list rsi, rdi
bits 64
section .text
extern __gmp_modlimb_invert_table
global __gmpn_divexact_1
%ifdef DLL
export __gmpn_divexact_1
%endif
__gmpn_divexact_1:
movsxd r8,r8d
mov r10,rdx
mov rax,r9
and rax,byte 1
add rax,r8
cmp rax,byte 4
jae L_mul_by_inverse
xor rdx,rdx
L_div_top:
mov rax,[r10+r8*8-8]
div r9
mov [rcx+r8*8-8],rax
dec r8
jnz L_div_top
rep ret ; avoid single byte return
prologue L_mul_by_inverse, reg_save_list, 0
mov rsi,rdx ; src pointer
mov rdi,rcx ; dst pointer
mov rax,r9
stc
sbb rcx,rcx ; -1 -> rcx, r11
mov r11,rcx
L_strip_twos:
shr rax,1
inc rcx
jnc L_strip_twos
lea r9,[rax+rax+1]
and rax,byte 127
lea rdx,[rel __gmp_modlimb_invert_table]
movzx rax,byte [rdx+rax]
; If f(x) = 0, then x[n+1] = x[n] - f(x) / f'(x) is Newton's iteration for a
; root. With f(x) = 1/x - v we obtain x[n + 1] = 2 * x[n] - v * x[n] * x[n]
; as an iteration for x = 1 / v. This provides quadratic convergence so
; that the number of bits of precision doubles on each iteration. The
; iteration starts with 8-bit precision.
lea edx, [rax+rax]
imul eax, eax
imul eax, r9d
sub edx, eax ; inv -> rdx (16-bit approx)
lea eax, [rdx+rdx]
imul edx, edx
imul edx, r9d
sub eax, edx ; inv -> rcx (32-bit approx)
lea rdx, [rax+rax]
imul rax, rax
imul rax, r9
sub rdx, rax ; inv -> rcx (64-bit approx)
mov r8,r8
lea rsi,[rsi+r8*8]
lea rdi,[rdi+r8*8]
neg r8
mov r10,rdx
xor r11,r11
mov rax,[rsi+r8*8]
or rcx,rcx
mov rdx,[rsi+r8*8+8]
jz L_odd_entry
shrd rax, rdx, cl
inc r8
jmp L_even_entry
L_odd_top:
mul r9
mov rax,[rsi+r8*8]
sub rdx,r11
sub rax,rdx
sbb r11,r11
L_odd_entry:
imul rax,r10
mov [rdi+r8*8],rax
inc r8
jnz L_odd_top
jmp L_exit
L_even_top:
mul r9
sub rdx,r11
mov rax,[rsi+r8*8-8]
mov r11,[rsi+r8*8]
shrd rax,r11,cl
sub rax,rdx
sbb r11,r11
L_even_entry:
imul rax,r10
mov [rdi+r8*8-8],rax
inc r8
jnz L_even_top
mul r9
mov rax,[rsi-8]
sub rdx,r11
shr rax,cl
sub rax,rdx
imul rax,r10
mov [rdi-8],rax
L_exit:
epilogue reg_save_list, 0
end