512 lines
10 KiB
NASM
512 lines
10 KiB
NASM
|
dnl AMD K7 mpn_mod_1 -- mpn by limb remainder.
|
||
|
|
||
|
dnl Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
|
||
|
dnl
|
||
|
dnl This file is part of the GNU MP Library.
|
||
|
dnl
|
||
|
dnl The GNU MP Library is free software; you can redistribute it and/or
|
||
|
dnl modify it under the terms of the GNU Lesser General Public License as
|
||
|
dnl published by the Free Software Foundation; either version 2.1 of the
|
||
|
dnl License, or (at your option) any later version.
|
||
|
dnl
|
||
|
dnl The GNU MP Library is distributed in the hope that it will be useful,
|
||
|
dnl but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
dnl MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
dnl Lesser General Public License for more details.
|
||
|
dnl
|
||
|
dnl You should have received a copy of the GNU Lesser General Public
|
||
|
dnl License along with the GNU MP Library; see the file COPYING.LIB. If
|
||
|
dnl not, write to the Free Software Foundation, Inc., 51 Franklin Street,
|
||
|
dnl Fifth Floor, Boston, MA 02110-1301, USA.
|
||
|
|
||
|
include(`../config.m4')
|
||
|
|
||
|
|
||
|
C K7: 17.0 cycles/limb.
|
||
|
|
||
|
|
||
|
C mp_limb_t mpn_mod_1 (mp_srcptr src, mp_size_t size, mp_limb_t divisor);
|
||
|
C mp_limb_t mpn_mod_1c (mp_srcptr src, mp_size_t size, mp_limb_t divisor,
|
||
|
C mp_limb_t carry);
|
||
|
C mp_limb_t mpn_preinv_mod_1 (mp_srcptr src, mp_size_t size, mp_limb_t divisor,
|
||
|
C mp_limb_t inverse);
|
||
|
C
|
||
|
C The code here is the same as mpn_divrem_1, but with the quotient
|
||
|
C discarded. See mpn/x86/k7/mmx/divrem_1.c for some comments.
|
||
|
|
||
|
|
||
|
dnl MUL_THRESHOLD is the size at which the multiply by inverse method is
|
||
|
dnl used, rather than plain "divl"s. Minimum value 2.
|
||
|
dnl
|
||
|
dnl The inverse takes about 50 cycles to calculate, but after that the
|
||
|
dnl multiply is 17 c/l versus division at 41 c/l.
|
||
|
dnl
|
||
|
dnl Using mul or div is about the same speed at 3 limbs, so the threshold
|
||
|
dnl is set to 4 to get the smaller div code used at 3.
|
||
|
|
||
|
deflit(MUL_THRESHOLD, 4)
|
||
|
|
||
|
|
||
|
defframe(PARAM_INVERSE,16) dnl mpn_preinv_mod_1
|
||
|
defframe(PARAM_CARRY, 16) dnl mpn_mod_1c
|
||
|
defframe(PARAM_DIVISOR,12)
|
||
|
defframe(PARAM_SIZE, 8)
|
||
|
defframe(PARAM_SRC, 4)
|
||
|
|
||
|
defframe(SAVE_EBX, -4)
|
||
|
defframe(SAVE_ESI, -8)
|
||
|
defframe(SAVE_EDI, -12)
|
||
|
defframe(SAVE_EBP, -16)
|
||
|
|
||
|
defframe(VAR_NORM, -20)
|
||
|
defframe(VAR_INVERSE, -24)
|
||
|
defframe(VAR_SRC_STOP,-28)
|
||
|
|
||
|
deflit(STACK_SPACE, 28)
|
||
|
|
||
|
TEXT
|
||
|
|
||
|
ALIGN(32)
|
||
|
PROLOGUE(mpn_preinv_mod_1)
|
||
|
deflit(`FRAME',0)
|
||
|
movl PARAM_SRC, %ecx
|
||
|
movl PARAM_SIZE, %eax
|
||
|
subl $STACK_SPACE, %esp FRAME_subl_esp(STACK_SPACE)
|
||
|
|
||
|
movl %ebp, SAVE_EBP
|
||
|
movl PARAM_DIVISOR, %ebp
|
||
|
|
||
|
movl %edi, SAVE_EDI
|
||
|
movl PARAM_INVERSE, %edx
|
||
|
|
||
|
movl %esi, SAVE_ESI
|
||
|
movl -4(%ecx,%eax,4), %edi C src high limb
|
||
|
leal -16(%ecx,%eax,4), %ecx C &src[size-4]
|
||
|
|
||
|
movl %ebx, SAVE_EBX
|
||
|
movl PARAM_INVERSE, %edx
|
||
|
|
||
|
movl $0, VAR_NORM C l==0
|
||
|
|
||
|
movl %edi, %esi
|
||
|
subl %ebp, %edi C high-divisor
|
||
|
|
||
|
cmovc( %esi, %edi) C restore if underflow
|
||
|
decl %eax
|
||
|
jz L(done_edi) C size==1, high-divisor only
|
||
|
|
||
|
movl 8(%ecx), %esi C src second high limb
|
||
|
movl %edx, VAR_INVERSE
|
||
|
|
||
|
movl $32, %ebx C 32-l
|
||
|
decl %eax
|
||
|
jz L(inverse_one_left) C size==2, one divide
|
||
|
|
||
|
movd %ebx, %mm7 C 32-l
|
||
|
decl %eax
|
||
|
jz L(inverse_two_left) C size==3, two divides
|
||
|
|
||
|
jmp L(inverse_top) C size>=4
|
||
|
|
||
|
|
||
|
L(done_edi):
|
||
|
movl SAVE_ESI, %esi
|
||
|
movl SAVE_EBP, %ebp
|
||
|
movl %edi, %eax
|
||
|
|
||
|
movl SAVE_EDI, %edi
|
||
|
addl $STACK_SPACE, %esp
|
||
|
|
||
|
ret
|
||
|
|
||
|
EPILOGUE()
|
||
|
|
||
|
|
||
|
ALIGN(32)
|
||
|
PROLOGUE(mpn_mod_1c)
|
||
|
deflit(`FRAME',0)
|
||
|
movl PARAM_CARRY, %edx
|
||
|
movl PARAM_SIZE, %ecx
|
||
|
subl $STACK_SPACE, %esp
|
||
|
deflit(`FRAME',STACK_SPACE)
|
||
|
|
||
|
movl %ebp, SAVE_EBP
|
||
|
movl PARAM_DIVISOR, %ebp
|
||
|
|
||
|
movl %esi, SAVE_ESI
|
||
|
movl PARAM_SRC, %esi
|
||
|
jmp L(start_1c)
|
||
|
|
||
|
EPILOGUE()
|
||
|
|
||
|
|
||
|
ALIGN(32)
|
||
|
PROLOGUE(mpn_mod_1)
|
||
|
deflit(`FRAME',0)
|
||
|
|
||
|
movl PARAM_SIZE, %ecx
|
||
|
movl $0, %edx C initial carry (if can't skip a div)
|
||
|
subl $STACK_SPACE, %esp
|
||
|
deflit(`FRAME',STACK_SPACE)
|
||
|
|
||
|
movl %esi, SAVE_ESI
|
||
|
movl PARAM_SRC, %esi
|
||
|
|
||
|
movl %ebp, SAVE_EBP
|
||
|
movl PARAM_DIVISOR, %ebp
|
||
|
|
||
|
orl %ecx, %ecx
|
||
|
jz L(divide_done)
|
||
|
|
||
|
movl -4(%esi,%ecx,4), %eax C src high limb
|
||
|
|
||
|
cmpl %ebp, %eax C carry flag if high<divisor
|
||
|
|
||
|
cmovc( %eax, %edx) C src high limb as initial carry
|
||
|
sbbl $0, %ecx C size-1 to skip one div
|
||
|
jz L(divide_done)
|
||
|
|
||
|
|
||
|
ALIGN(16)
|
||
|
L(start_1c):
|
||
|
C eax
|
||
|
C ebx
|
||
|
C ecx size
|
||
|
C edx carry
|
||
|
C esi src
|
||
|
C edi
|
||
|
C ebp divisor
|
||
|
|
||
|
cmpl $MUL_THRESHOLD, %ecx
|
||
|
jae L(mul_by_inverse)
|
||
|
|
||
|
|
||
|
|
||
|
C With a MUL_THRESHOLD of 4, this "loop" only ever does 1 to 3 iterations,
|
||
|
C but it's already fast and compact, and there's nothing to gain by
|
||
|
C expanding it out.
|
||
|
C
|
||
|
C Using PARAM_DIVISOR in the divl is a couple of cycles faster than %ebp.
|
||
|
|
||
|
orl %ecx, %ecx
|
||
|
jz L(divide_done)
|
||
|
|
||
|
|
||
|
L(divide_top):
|
||
|
C eax scratch (quotient)
|
||
|
C ebx
|
||
|
C ecx counter, limbs, decrementing
|
||
|
C edx scratch (remainder)
|
||
|
C esi src
|
||
|
C edi
|
||
|
C ebp
|
||
|
|
||
|
movl -4(%esi,%ecx,4), %eax
|
||
|
|
||
|
divl PARAM_DIVISOR
|
||
|
|
||
|
decl %ecx
|
||
|
jnz L(divide_top)
|
||
|
|
||
|
|
||
|
L(divide_done):
|
||
|
movl SAVE_ESI, %esi
|
||
|
movl SAVE_EBP, %ebp
|
||
|
addl $STACK_SPACE, %esp
|
||
|
|
||
|
movl %edx, %eax
|
||
|
|
||
|
ret
|
||
|
|
||
|
|
||
|
|
||
|
C -----------------------------------------------------------------------------
|
||
|
|
||
|
L(mul_by_inverse):
|
||
|
C eax
|
||
|
C ebx
|
||
|
C ecx size
|
||
|
C edx carry
|
||
|
C esi src
|
||
|
C edi
|
||
|
C ebp divisor
|
||
|
|
||
|
bsrl %ebp, %eax C 31-l
|
||
|
|
||
|
movl %ebx, SAVE_EBX
|
||
|
movl %ecx, %ebx C size
|
||
|
|
||
|
movl %edi, SAVE_EDI
|
||
|
movl $31, %ecx
|
||
|
|
||
|
movl %edx, %edi C carry
|
||
|
movl $-1, %edx
|
||
|
|
||
|
C
|
||
|
|
||
|
xorl %eax, %ecx C l
|
||
|
incl %eax C 32-l
|
||
|
|
||
|
shll %cl, %ebp C d normalized
|
||
|
movl %ecx, VAR_NORM
|
||
|
|
||
|
movd %eax, %mm7 C 32-l
|
||
|
|
||
|
movl $-1, %eax
|
||
|
subl %ebp, %edx C (b-d)-1 so edx:eax = b*(b-d)-1
|
||
|
|
||
|
divl %ebp C floor (b*(b-d)-1) / d
|
||
|
|
||
|
C
|
||
|
|
||
|
movl %eax, VAR_INVERSE
|
||
|
leal -12(%esi,%ebx,4), %eax C &src[size-3]
|
||
|
|
||
|
movl 8(%eax), %esi C src high limb
|
||
|
movl 4(%eax), %edx C src second highest limb
|
||
|
|
||
|
shldl( %cl, %esi, %edi) C n2 = carry,high << l
|
||
|
|
||
|
shldl( %cl, %edx, %esi) C n10 = high,second << l
|
||
|
|
||
|
movl %eax, %ecx C &src[size-3]
|
||
|
|
||
|
|
||
|
ifelse(MUL_THRESHOLD,2,`
|
||
|
cmpl $2, %ebx
|
||
|
je L(inverse_two_left)
|
||
|
')
|
||
|
|
||
|
|
||
|
C The dependent chain here is the same as in mpn_divrem_1, but a few
|
||
|
C instructions are saved by not needing to store the quotient limbs.
|
||
|
C Unfortunately this doesn't get the code down to the theoretical 16 c/l.
|
||
|
C
|
||
|
C There's four dummy instructions in the loop, all of which are necessary
|
||
|
C for the claimed 17 c/l. It's a 1 to 3 cycle slowdown if any are removed,
|
||
|
C or changed from load to store or vice versa. They're not completely
|
||
|
C random, since they correspond to what mpn_divrem_1 has, but there's no
|
||
|
C obvious reason why they're necessary. Presumably they induce something
|
||
|
C good in the out of order execution, perhaps through some load/store
|
||
|
C ordering and/or decoding effects.
|
||
|
C
|
||
|
C The q1==0xFFFFFFFF case is handled here the same as in mpn_divrem_1. On
|
||
|
C on special data that comes out as q1==0xFFFFFFFF always, the loop runs at
|
||
|
C about 13.5 c/l.
|
||
|
|
||
|
ALIGN(32)
|
||
|
L(inverse_top):
|
||
|
C eax scratch
|
||
|
C ebx scratch (nadj, q1)
|
||
|
C ecx src pointer, decrementing
|
||
|
C edx scratch
|
||
|
C esi n10
|
||
|
C edi n2
|
||
|
C ebp divisor
|
||
|
C
|
||
|
C mm0 scratch (src qword)
|
||
|
C mm7 rshift for normalization
|
||
|
|
||
|
cmpl $0x80000000, %esi C n1 as 0=c, 1=nc
|
||
|
movl %edi, %eax C n2
|
||
|
movl PARAM_SIZE, %ebx C dummy
|
||
|
|
||
|
leal (%ebp,%esi), %ebx
|
||
|
cmovc( %esi, %ebx) C nadj = n10 + (-n1 & d), ignoring overflow
|
||
|
sbbl $-1, %eax C n2+n1
|
||
|
|
||
|
mull VAR_INVERSE C m*(n2+n1)
|
||
|
|
||
|
movq (%ecx), %mm0 C next src limb and the one below it
|
||
|
subl $4, %ecx
|
||
|
|
||
|
movl %ecx, PARAM_SIZE C dummy
|
||
|
|
||
|
C
|
||
|
|
||
|
addl %ebx, %eax C m*(n2+n1) + nadj, low giving carry flag
|
||
|
leal 1(%edi), %ebx C n2+1
|
||
|
movl %ebp, %eax C d
|
||
|
|
||
|
C
|
||
|
|
||
|
adcl %edx, %ebx C 1 + high(n2<<32 + m*(n2+n1) + nadj) = q1+1
|
||
|
jz L(q1_ff)
|
||
|
nop C dummy
|
||
|
|
||
|
mull %ebx C (q1+1)*d
|
||
|
|
||
|
psrlq %mm7, %mm0
|
||
|
leal (%ecx), %ecx C dummy
|
||
|
|
||
|
C
|
||
|
|
||
|
C
|
||
|
|
||
|
subl %eax, %esi C low n - (q1+1)*d
|
||
|
movl PARAM_SRC, %eax
|
||
|
|
||
|
C
|
||
|
|
||
|
sbbl %edx, %edi C high n - (q1+1)*d, 0 or -1
|
||
|
movl %esi, %edi C remainder -> n2
|
||
|
leal (%ebp,%esi), %edx
|
||
|
|
||
|
movd %mm0, %esi
|
||
|
|
||
|
cmovc( %edx, %edi) C n - q1*d if underflow from using q1+1
|
||
|
cmpl %eax, %ecx
|
||
|
jae L(inverse_top)
|
||
|
|
||
|
|
||
|
L(inverse_loop_done):
|
||
|
|
||
|
|
||
|
C -----------------------------------------------------------------------------
|
||
|
|
||
|
L(inverse_two_left):
|
||
|
C eax scratch
|
||
|
C ebx scratch (nadj, q1)
|
||
|
C ecx &src[-1]
|
||
|
C edx scratch
|
||
|
C esi n10
|
||
|
C edi n2
|
||
|
C ebp divisor
|
||
|
C
|
||
|
C mm0 scratch (src dword)
|
||
|
C mm7 rshift
|
||
|
|
||
|
cmpl $0x80000000, %esi C n1 as 0=c, 1=nc
|
||
|
movl %edi, %eax C n2
|
||
|
|
||
|
leal (%ebp,%esi), %ebx
|
||
|
cmovc( %esi, %ebx) C nadj = n10 + (-n1 & d), ignoring overflow
|
||
|
sbbl $-1, %eax C n2+n1
|
||
|
|
||
|
mull VAR_INVERSE C m*(n2+n1)
|
||
|
|
||
|
movd 4(%ecx), %mm0 C src low limb
|
||
|
|
||
|
C
|
||
|
|
||
|
C
|
||
|
|
||
|
addl %ebx, %eax C m*(n2+n1) + nadj, low giving carry flag
|
||
|
leal 1(%edi), %ebx C n2+1
|
||
|
movl %ebp, %eax C d
|
||
|
|
||
|
adcl %edx, %ebx C 1 + high(n2<<32 + m*(n2+n1) + nadj) = q1+1
|
||
|
|
||
|
sbbl $0, %ebx
|
||
|
|
||
|
mull %ebx C (q1+1)*d
|
||
|
|
||
|
psllq $32, %mm0
|
||
|
|
||
|
psrlq %mm7, %mm0
|
||
|
|
||
|
C
|
||
|
|
||
|
subl %eax, %esi
|
||
|
|
||
|
C
|
||
|
|
||
|
sbbl %edx, %edi C n - (q1+1)*d
|
||
|
movl %esi, %edi C remainder -> n2
|
||
|
leal (%ebp,%esi), %edx
|
||
|
|
||
|
movd %mm0, %esi
|
||
|
|
||
|
cmovc( %edx, %edi) C n - q1*d if underflow from using q1+1
|
||
|
|
||
|
|
||
|
L(inverse_one_left):
|
||
|
C eax scratch
|
||
|
C ebx scratch (nadj, q1)
|
||
|
C ecx
|
||
|
C edx scratch
|
||
|
C esi n10
|
||
|
C edi n2
|
||
|
C ebp divisor
|
||
|
C
|
||
|
C mm0 src limb, shifted
|
||
|
C mm7 rshift
|
||
|
|
||
|
cmpl $0x80000000, %esi C n1 as 0=c, 1=nc
|
||
|
movl %edi, %eax C n2
|
||
|
|
||
|
leal (%ebp,%esi), %ebx
|
||
|
cmovc( %esi, %ebx) C nadj = n10 + (-n1 & d), ignoring overflow
|
||
|
sbbl $-1, %eax C n2+n1
|
||
|
|
||
|
mull VAR_INVERSE C m*(n2+n1)
|
||
|
|
||
|
movl VAR_NORM, %ecx C for final denorm
|
||
|
|
||
|
C
|
||
|
|
||
|
C
|
||
|
|
||
|
addl %ebx, %eax C m*(n2+n1) + nadj, low giving carry flag
|
||
|
leal 1(%edi), %ebx C n2+1
|
||
|
movl %ebp, %eax C d
|
||
|
|
||
|
C
|
||
|
|
||
|
adcl %edx, %ebx C 1 + high(n2<<32 + m*(n2+n1) + nadj) = q1+1
|
||
|
|
||
|
sbbl $0, %ebx
|
||
|
|
||
|
mull %ebx C (q1+1)*d
|
||
|
|
||
|
movl SAVE_EBX, %ebx
|
||
|
|
||
|
C
|
||
|
|
||
|
C
|
||
|
|
||
|
subl %eax, %esi
|
||
|
|
||
|
movl %esi, %eax C remainder
|
||
|
movl SAVE_ESI, %esi
|
||
|
|
||
|
sbbl %edx, %edi C n - (q1+1)*d
|
||
|
leal (%ebp,%eax), %edx
|
||
|
movl SAVE_EBP, %ebp
|
||
|
|
||
|
cmovc( %edx, %eax) C n - q1*d if underflow from using q1+1
|
||
|
movl SAVE_EDI, %edi
|
||
|
|
||
|
shrl %cl, %eax C denorm remainder
|
||
|
addl $STACK_SPACE, %esp
|
||
|
emms
|
||
|
|
||
|
ret
|
||
|
|
||
|
|
||
|
C -----------------------------------------------------------------------------
|
||
|
C
|
||
|
C Special case for q1=0xFFFFFFFF, giving q=0xFFFFFFFF meaning the low dword
|
||
|
C of q*d is simply -d and the remainder n-q*d = n10+d
|
||
|
|
||
|
L(q1_ff):
|
||
|
C eax (divisor)
|
||
|
C ebx (q1+1 == 0)
|
||
|
C ecx src pointer
|
||
|
C edx
|
||
|
C esi n10
|
||
|
C edi (n2)
|
||
|
C ebp divisor
|
||
|
|
||
|
movl PARAM_SRC, %edx
|
||
|
leal (%ebp,%esi), %edi C n-q*d remainder -> next n2
|
||
|
psrlq %mm7, %mm0
|
||
|
|
||
|
movd %mm0, %esi C next n10
|
||
|
|
||
|
cmpl %edx, %ecx
|
||
|
jae L(inverse_top)
|
||
|
jmp L(inverse_loop_done)
|
||
|
|
||
|
EPILOGUE()
|