mpir/mpn/x86/k7/mmx/mod_1.asm

512 lines
10 KiB
NASM
Raw Normal View History

dnl AMD K7 mpn_mod_1 -- mpn by limb remainder.
dnl Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
dnl
dnl This file is part of the GNU MP Library.
dnl
dnl The GNU MP Library is free software; you can redistribute it and/or
dnl modify it under the terms of the GNU Lesser General Public License as
dnl published by the Free Software Foundation; either version 2.1 of the
dnl License, or (at your option) any later version.
dnl
dnl The GNU MP Library is distributed in the hope that it will be useful,
dnl but WITHOUT ANY WARRANTY; without even the implied warranty of
dnl MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
dnl Lesser General Public License for more details.
dnl
dnl You should have received a copy of the GNU Lesser General Public
dnl License along with the GNU MP Library; see the file COPYING.LIB. If
dnl not, write to the Free Software Foundation, Inc., 51 Franklin Street,
dnl Fifth Floor, Boston, MA 02110-1301, USA.
include(`../config.m4')
C K7: 17.0 cycles/limb.
C mp_limb_t mpn_mod_1 (mp_srcptr src, mp_size_t size, mp_limb_t divisor);
C mp_limb_t mpn_mod_1c (mp_srcptr src, mp_size_t size, mp_limb_t divisor,
C mp_limb_t carry);
C mp_limb_t mpn_preinv_mod_1 (mp_srcptr src, mp_size_t size, mp_limb_t divisor,
C mp_limb_t inverse);
C
C The code here is the same as mpn_divrem_1, but with the quotient
C discarded. See mpn/x86/k7/mmx/divrem_1.c for some comments.
dnl MUL_THRESHOLD is the size at which the multiply by inverse method is
dnl used, rather than plain "divl"s. Minimum value 2.
dnl
dnl The inverse takes about 50 cycles to calculate, but after that the
dnl multiply is 17 c/l versus division at 41 c/l.
dnl
dnl Using mul or div is about the same speed at 3 limbs, so the threshold
dnl is set to 4 to get the smaller div code used at 3.
deflit(MUL_THRESHOLD, 4)
defframe(PARAM_INVERSE,16) dnl mpn_preinv_mod_1
defframe(PARAM_CARRY, 16) dnl mpn_mod_1c
defframe(PARAM_DIVISOR,12)
defframe(PARAM_SIZE, 8)
defframe(PARAM_SRC, 4)
defframe(SAVE_EBX, -4)
defframe(SAVE_ESI, -8)
defframe(SAVE_EDI, -12)
defframe(SAVE_EBP, -16)
defframe(VAR_NORM, -20)
defframe(VAR_INVERSE, -24)
defframe(VAR_SRC_STOP,-28)
deflit(STACK_SPACE, 28)
TEXT
ALIGN(32)
PROLOGUE(mpn_preinv_mod_1)
deflit(`FRAME',0)
movl PARAM_SRC, %ecx
movl PARAM_SIZE, %eax
subl $STACK_SPACE, %esp FRAME_subl_esp(STACK_SPACE)
movl %ebp, SAVE_EBP
movl PARAM_DIVISOR, %ebp
movl %edi, SAVE_EDI
movl PARAM_INVERSE, %edx
movl %esi, SAVE_ESI
movl -4(%ecx,%eax,4), %edi C src high limb
leal -16(%ecx,%eax,4), %ecx C &src[size-4]
movl %ebx, SAVE_EBX
movl PARAM_INVERSE, %edx
movl $0, VAR_NORM C l==0
movl %edi, %esi
subl %ebp, %edi C high-divisor
cmovc( %esi, %edi) C restore if underflow
decl %eax
jz L(done_edi) C size==1, high-divisor only
movl 8(%ecx), %esi C src second high limb
movl %edx, VAR_INVERSE
movl $32, %ebx C 32-l
decl %eax
jz L(inverse_one_left) C size==2, one divide
movd %ebx, %mm7 C 32-l
decl %eax
jz L(inverse_two_left) C size==3, two divides
jmp L(inverse_top) C size>=4
L(done_edi):
movl SAVE_ESI, %esi
movl SAVE_EBP, %ebp
movl %edi, %eax
movl SAVE_EDI, %edi
addl $STACK_SPACE, %esp
ret
EPILOGUE()
ALIGN(32)
PROLOGUE(mpn_mod_1c)
deflit(`FRAME',0)
movl PARAM_CARRY, %edx
movl PARAM_SIZE, %ecx
subl $STACK_SPACE, %esp
deflit(`FRAME',STACK_SPACE)
movl %ebp, SAVE_EBP
movl PARAM_DIVISOR, %ebp
movl %esi, SAVE_ESI
movl PARAM_SRC, %esi
jmp L(start_1c)
EPILOGUE()
ALIGN(32)
PROLOGUE(mpn_mod_1)
deflit(`FRAME',0)
movl PARAM_SIZE, %ecx
movl $0, %edx C initial carry (if can't skip a div)
subl $STACK_SPACE, %esp
deflit(`FRAME',STACK_SPACE)
movl %esi, SAVE_ESI
movl PARAM_SRC, %esi
movl %ebp, SAVE_EBP
movl PARAM_DIVISOR, %ebp
orl %ecx, %ecx
jz L(divide_done)
movl -4(%esi,%ecx,4), %eax C src high limb
cmpl %ebp, %eax C carry flag if high<divisor
cmovc( %eax, %edx) C src high limb as initial carry
sbbl $0, %ecx C size-1 to skip one div
jz L(divide_done)
ALIGN(16)
L(start_1c):
C eax
C ebx
C ecx size
C edx carry
C esi src
C edi
C ebp divisor
cmpl $MUL_THRESHOLD, %ecx
jae L(mul_by_inverse)
C With a MUL_THRESHOLD of 4, this "loop" only ever does 1 to 3 iterations,
C but it's already fast and compact, and there's nothing to gain by
C expanding it out.
C
C Using PARAM_DIVISOR in the divl is a couple of cycles faster than %ebp.
orl %ecx, %ecx
jz L(divide_done)
L(divide_top):
C eax scratch (quotient)
C ebx
C ecx counter, limbs, decrementing
C edx scratch (remainder)
C esi src
C edi
C ebp
movl -4(%esi,%ecx,4), %eax
divl PARAM_DIVISOR
decl %ecx
jnz L(divide_top)
L(divide_done):
movl SAVE_ESI, %esi
movl SAVE_EBP, %ebp
addl $STACK_SPACE, %esp
movl %edx, %eax
ret
C -----------------------------------------------------------------------------
L(mul_by_inverse):
C eax
C ebx
C ecx size
C edx carry
C esi src
C edi
C ebp divisor
bsrl %ebp, %eax C 31-l
movl %ebx, SAVE_EBX
movl %ecx, %ebx C size
movl %edi, SAVE_EDI
movl $31, %ecx
movl %edx, %edi C carry
movl $-1, %edx
C
xorl %eax, %ecx C l
incl %eax C 32-l
shll %cl, %ebp C d normalized
movl %ecx, VAR_NORM
movd %eax, %mm7 C 32-l
movl $-1, %eax
subl %ebp, %edx C (b-d)-1 so edx:eax = b*(b-d)-1
divl %ebp C floor (b*(b-d)-1) / d
C
movl %eax, VAR_INVERSE
leal -12(%esi,%ebx,4), %eax C &src[size-3]
movl 8(%eax), %esi C src high limb
movl 4(%eax), %edx C src second highest limb
shldl( %cl, %esi, %edi) C n2 = carry,high << l
shldl( %cl, %edx, %esi) C n10 = high,second << l
movl %eax, %ecx C &src[size-3]
ifelse(MUL_THRESHOLD,2,`
cmpl $2, %ebx
je L(inverse_two_left)
')
C The dependent chain here is the same as in mpn_divrem_1, but a few
C instructions are saved by not needing to store the quotient limbs.
C Unfortunately this doesn't get the code down to the theoretical 16 c/l.
C
C There's four dummy instructions in the loop, all of which are necessary
C for the claimed 17 c/l. It's a 1 to 3 cycle slowdown if any are removed,
C or changed from load to store or vice versa. They're not completely
C random, since they correspond to what mpn_divrem_1 has, but there's no
C obvious reason why they're necessary. Presumably they induce something
C good in the out of order execution, perhaps through some load/store
C ordering and/or decoding effects.
C
C The q1==0xFFFFFFFF case is handled here the same as in mpn_divrem_1. On
C on special data that comes out as q1==0xFFFFFFFF always, the loop runs at
C about 13.5 c/l.
ALIGN(32)
L(inverse_top):
C eax scratch
C ebx scratch (nadj, q1)
C ecx src pointer, decrementing
C edx scratch
C esi n10
C edi n2
C ebp divisor
C
C mm0 scratch (src qword)
C mm7 rshift for normalization
cmpl $0x80000000, %esi C n1 as 0=c, 1=nc
movl %edi, %eax C n2
movl PARAM_SIZE, %ebx C dummy
leal (%ebp,%esi), %ebx
cmovc( %esi, %ebx) C nadj = n10 + (-n1 & d), ignoring overflow
sbbl $-1, %eax C n2+n1
mull VAR_INVERSE C m*(n2+n1)
movq (%ecx), %mm0 C next src limb and the one below it
subl $4, %ecx
movl %ecx, PARAM_SIZE C dummy
C
addl %ebx, %eax C m*(n2+n1) + nadj, low giving carry flag
leal 1(%edi), %ebx C n2+1
movl %ebp, %eax C d
C
adcl %edx, %ebx C 1 + high(n2<<32 + m*(n2+n1) + nadj) = q1+1
jz L(q1_ff)
nop C dummy
mull %ebx C (q1+1)*d
psrlq %mm7, %mm0
leal (%ecx), %ecx C dummy
C
C
subl %eax, %esi C low n - (q1+1)*d
movl PARAM_SRC, %eax
C
sbbl %edx, %edi C high n - (q1+1)*d, 0 or -1
movl %esi, %edi C remainder -> n2
leal (%ebp,%esi), %edx
movd %mm0, %esi
cmovc( %edx, %edi) C n - q1*d if underflow from using q1+1
cmpl %eax, %ecx
jae L(inverse_top)
L(inverse_loop_done):
C -----------------------------------------------------------------------------
L(inverse_two_left):
C eax scratch
C ebx scratch (nadj, q1)
C ecx &src[-1]
C edx scratch
C esi n10
C edi n2
C ebp divisor
C
C mm0 scratch (src dword)
C mm7 rshift
cmpl $0x80000000, %esi C n1 as 0=c, 1=nc
movl %edi, %eax C n2
leal (%ebp,%esi), %ebx
cmovc( %esi, %ebx) C nadj = n10 + (-n1 & d), ignoring overflow
sbbl $-1, %eax C n2+n1
mull VAR_INVERSE C m*(n2+n1)
movd 4(%ecx), %mm0 C src low limb
C
C
addl %ebx, %eax C m*(n2+n1) + nadj, low giving carry flag
leal 1(%edi), %ebx C n2+1
movl %ebp, %eax C d
adcl %edx, %ebx C 1 + high(n2<<32 + m*(n2+n1) + nadj) = q1+1
sbbl $0, %ebx
mull %ebx C (q1+1)*d
psllq $32, %mm0
psrlq %mm7, %mm0
C
subl %eax, %esi
C
sbbl %edx, %edi C n - (q1+1)*d
movl %esi, %edi C remainder -> n2
leal (%ebp,%esi), %edx
movd %mm0, %esi
cmovc( %edx, %edi) C n - q1*d if underflow from using q1+1
L(inverse_one_left):
C eax scratch
C ebx scratch (nadj, q1)
C ecx
C edx scratch
C esi n10
C edi n2
C ebp divisor
C
C mm0 src limb, shifted
C mm7 rshift
cmpl $0x80000000, %esi C n1 as 0=c, 1=nc
movl %edi, %eax C n2
leal (%ebp,%esi), %ebx
cmovc( %esi, %ebx) C nadj = n10 + (-n1 & d), ignoring overflow
sbbl $-1, %eax C n2+n1
mull VAR_INVERSE C m*(n2+n1)
movl VAR_NORM, %ecx C for final denorm
C
C
addl %ebx, %eax C m*(n2+n1) + nadj, low giving carry flag
leal 1(%edi), %ebx C n2+1
movl %ebp, %eax C d
C
adcl %edx, %ebx C 1 + high(n2<<32 + m*(n2+n1) + nadj) = q1+1
sbbl $0, %ebx
mull %ebx C (q1+1)*d
movl SAVE_EBX, %ebx
C
C
subl %eax, %esi
movl %esi, %eax C remainder
movl SAVE_ESI, %esi
sbbl %edx, %edi C n - (q1+1)*d
leal (%ebp,%eax), %edx
movl SAVE_EBP, %ebp
cmovc( %edx, %eax) C n - q1*d if underflow from using q1+1
movl SAVE_EDI, %edi
shrl %cl, %eax C denorm remainder
addl $STACK_SPACE, %esp
emms
ret
C -----------------------------------------------------------------------------
C
C Special case for q1=0xFFFFFFFF, giving q=0xFFFFFFFF meaning the low dword
C of q*d is simply -d and the remainder n-q*d = n10+d
L(q1_ff):
C eax (divisor)
C ebx (q1+1 == 0)
C ecx src pointer
C edx
C esi n10
C edi (n2)
C ebp divisor
movl PARAM_SRC, %edx
leal (%ebp,%esi), %edi C n-q*d remainder -> next n2
psrlq %mm7, %mm0
movd %mm0, %esi C next n10
cmpl %edx, %ecx
jae L(inverse_top)
jmp L(inverse_loop_done)
EPILOGUE()