581 lines
16 KiB
C
581 lines
16 KiB
C
|
/* mpn_powm -- Compute R = U^E mod M.
|
||
|
|
||
|
Contributed to the GNU project by Torbjorn Granlund.
|
||
|
|
||
|
THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES. IT IS ONLY
|
||
|
SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST
|
||
|
GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
|
||
|
|
||
|
Copyright 2007-2012 Free Software Foundation, Inc.
|
||
|
|
||
|
This file is part of the GNU MP Library.
|
||
|
|
||
|
The GNU MP Library is free software; you can redistribute it and/or modify
|
||
|
it under the terms of either:
|
||
|
|
||
|
* the GNU Lesser General Public License as published by the Free
|
||
|
Software Foundation; either version 3 of the License, or (at your
|
||
|
option) any later version.
|
||
|
|
||
|
or
|
||
|
|
||
|
* the GNU General Public License as published by the Free Software
|
||
|
Foundation; either version 2 of the License, or (at your option) any
|
||
|
later version.
|
||
|
|
||
|
or both in parallel, as here.
|
||
|
|
||
|
The GNU MP Library is distributed in the hope that it will be useful, but
|
||
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
|
for more details.
|
||
|
|
||
|
You should have received copies of the GNU General Public License and the
|
||
|
GNU Lesser General Public License along with the GNU MP Library. If not,
|
||
|
see https://www.gnu.org/licenses/. */
|
||
|
|
||
|
|
||
|
/*
|
||
|
BASIC ALGORITHM, Compute U^E mod M, where M < B^n is odd.
|
||
|
|
||
|
1. W <- U
|
||
|
|
||
|
2. T <- (B^n * U) mod M Convert to REDC form
|
||
|
|
||
|
3. Compute table U^1, U^3, U^5... of E-dependent size
|
||
|
|
||
|
4. While there are more bits in E
|
||
|
W <- power left-to-right base-k
|
||
|
|
||
|
|
||
|
TODO:
|
||
|
|
||
|
* Make getbits a macro, thereby allowing it to update the index operand.
|
||
|
That will simplify the code using getbits. (Perhaps make getbits' sibling
|
||
|
getbit then have similar form, for symmetry.)
|
||
|
|
||
|
* Write an itch function. Or perhaps get rid of tp parameter since the huge
|
||
|
pp area is allocated locally anyway?
|
||
|
|
||
|
* Choose window size without looping. (Superoptimize or think(tm).)
|
||
|
|
||
|
* Handle small bases with initial, reduction-free exponentiation.
|
||
|
|
||
|
* Call new division functions, not mpn_tdiv_qr.
|
||
|
|
||
|
* Consider special code for one-limb M.
|
||
|
|
||
|
* How should we handle the redc1/redc2/redc_n choice?
|
||
|
- redc1: T(binvert_1limb) + e * (n) * (T(mullo-1x1) + n*T(addmul_1))
|
||
|
- redc2: T(binvert_2limbs) + e * (n/2) * (T(mullo-2x2) + n*T(addmul_2))
|
||
|
- redc_n: T(binvert_nlimbs) + e * (T(mullo-nxn) + T(M(n)))
|
||
|
This disregards the addmul_N constant term, but we could think of
|
||
|
that as part of the respective mullo.
|
||
|
|
||
|
* When U (the base) is small, we should start the exponentiation with plain
|
||
|
operations, then convert that partial result to REDC form.
|
||
|
|
||
|
* When U is just one limb, should it be handled without the k-ary tricks?
|
||
|
We could keep a factor of B^n in W, but use U' = BU as base. After
|
||
|
multiplying by this (pseudo two-limb) number, we need to multiply by 1/B
|
||
|
mod M.
|
||
|
*/
|
||
|
|
||
|
#include "mpir.h"
|
||
|
#include "gmp-impl.h"
|
||
|
#include "longlong.h"
|
||
|
|
||
|
#undef MPN_REDC_1
|
||
|
#define MPN_REDC_1(rp, up, mp, n, invm) \
|
||
|
(mpn_redc_1 (rp, up, mp, n, invm))
|
||
|
|
||
|
#undef MPN_REDC_2
|
||
|
#define MPN_REDC_2(rp, up, mp, n, mip) \
|
||
|
(mpn_redc_2 (rp, up, mp, n, mip))
|
||
|
|
||
|
#if HAVE_NATIVE_mpn_addmul_2 || HAVE_NATIVE_mpn_redc_2
|
||
|
#define WANT_REDC_2 1
|
||
|
#endif
|
||
|
|
||
|
#define getbit(p,bi) \
|
||
|
((p[(bi - 1) / GMP_LIMB_BITS] >> (bi - 1) % GMP_LIMB_BITS) & 1)
|
||
|
|
||
|
static inline mp_limb_t
|
||
|
getbits (const mp_limb_t *p, mp_bitcnt_t bi, int nbits)
|
||
|
{
|
||
|
int nbits_in_r;
|
||
|
mp_limb_t r;
|
||
|
mp_size_t i;
|
||
|
|
||
|
if (bi < nbits)
|
||
|
{
|
||
|
return p[0] & (((mp_limb_t) 1 << bi) - 1);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
bi -= nbits; /* bit index of low bit to extract */
|
||
|
i = bi / GMP_NUMB_BITS; /* word index of low bit to extract */
|
||
|
bi %= GMP_NUMB_BITS; /* bit index in low word */
|
||
|
r = p[i] >> bi; /* extract (low) bits */
|
||
|
nbits_in_r = GMP_NUMB_BITS - bi; /* number of bits now in r */
|
||
|
if (nbits_in_r < nbits) /* did we get enough bits? */
|
||
|
r += p[i + 1] << nbits_in_r; /* prepend bits from higher word */
|
||
|
return r & (((mp_limb_t ) 1 << nbits) - 1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline int
|
||
|
win_size (mp_bitcnt_t eb)
|
||
|
{
|
||
|
int k;
|
||
|
static mp_bitcnt_t x[] = {0,7,25,81,241,673,1793,4609,11521,28161,~(mp_bitcnt_t)0};
|
||
|
for (k = 1; eb > x[k]; k++)
|
||
|
;
|
||
|
return k;
|
||
|
}
|
||
|
|
||
|
/* Convert U to REDC form, U_r = B^n * U mod M */
|
||
|
static void
|
||
|
redcify (mp_ptr rp, mp_srcptr up, mp_size_t un, mp_srcptr mp, mp_size_t n)
|
||
|
{
|
||
|
mp_ptr tp, qp;
|
||
|
TMP_DECL;
|
||
|
TMP_MARK;
|
||
|
|
||
|
tp = TMP_ALLOC_LIMBS (un + n);
|
||
|
qp = TMP_ALLOC_LIMBS (un + 1); /* FIXME: Put at tp+? */
|
||
|
|
||
|
MPN_ZERO (tp, n);
|
||
|
MPN_COPY (tp + n, up, un);
|
||
|
mpn_tdiv_qr (qp, rp, 0L, tp, un + n, mp, n);
|
||
|
TMP_FREE;
|
||
|
}
|
||
|
|
||
|
/* rp[n-1..0] = bp[bn-1..0] ^ ep[en-1..0] mod mp[n-1..0]
|
||
|
Requires that mp[n-1..0] is odd.
|
||
|
Requires that ep[en-1..0] is > 1.
|
||
|
Uses scratch space at tp of MAX(mpn_binvert_itch(n),2n) limbs. */
|
||
|
void
|
||
|
mpn_powm (mp_ptr rp, mp_srcptr bp, mp_size_t bn,
|
||
|
mp_srcptr ep, mp_size_t en,
|
||
|
mp_srcptr mp, mp_size_t n, mp_ptr tp)
|
||
|
{
|
||
|
mp_limb_t ip[2], *mip;
|
||
|
int cnt;
|
||
|
mp_bitcnt_t ebi;
|
||
|
int windowsize, this_windowsize;
|
||
|
mp_limb_t expbits;
|
||
|
mp_ptr pp, this_pp;
|
||
|
long i;
|
||
|
TMP_DECL;
|
||
|
|
||
|
ASSERT (en > 1 || (en == 1 && ep[0] > 1));
|
||
|
ASSERT (n >= 1 && ((mp[0] & 1) != 0));
|
||
|
|
||
|
TMP_MARK;
|
||
|
|
||
|
MPN_SIZEINBASE_2EXP(ebi, ep, en, 1);
|
||
|
|
||
|
#if 0
|
||
|
if (bn < n)
|
||
|
{
|
||
|
/* Do the first few exponent bits without mod reductions,
|
||
|
until the result is greater than the mod argument. */
|
||
|
for (;;)
|
||
|
{
|
||
|
mpn_sqr (tp, this_pp, tn);
|
||
|
tn = tn * 2 - 1, tn += tp[tn] != 0;
|
||
|
if (getbit (ep, ebi) != 0)
|
||
|
mpn_mul (..., tp, tn, bp, bn);
|
||
|
ebi--;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
windowsize = win_size (ebi);
|
||
|
|
||
|
#if WANT_REDC_2
|
||
|
if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))
|
||
|
{
|
||
|
mip = ip;
|
||
|
modlimb_invert (mip[0], mp[0]);
|
||
|
mip[0] = -mip[0];
|
||
|
}
|
||
|
else if (BELOW_THRESHOLD (n, REDC_2_TO_REDC_N_THRESHOLD))
|
||
|
{
|
||
|
mip = ip;
|
||
|
mpn_binvert (mip, mp, 2, tp);
|
||
|
mip[0] = -mip[0]; mip[1] = ~mip[1];
|
||
|
}
|
||
|
#else
|
||
|
if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_N_THRESHOLD))
|
||
|
{
|
||
|
mip = ip;
|
||
|
modlimb_invert (mip[0], mp[0]);
|
||
|
mip[0] = -mip[0];
|
||
|
}
|
||
|
#endif
|
||
|
else
|
||
|
{
|
||
|
mip = TMP_ALLOC_LIMBS (n);
|
||
|
mpn_binvert (mip, mp, n, tp);
|
||
|
}
|
||
|
|
||
|
pp = TMP_ALLOC_LIMBS (n << (windowsize - 1));
|
||
|
|
||
|
this_pp = pp;
|
||
|
redcify (this_pp, bp, bn, mp, n);
|
||
|
|
||
|
/* Store b^2 at rp. */
|
||
|
mpn_sqr (tp, this_pp, n);
|
||
|
#if WANT_REDC_2
|
||
|
if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))
|
||
|
MPN_REDC_1 (rp, tp, mp, n, mip[0]);
|
||
|
else if (BELOW_THRESHOLD (n, REDC_2_TO_REDC_N_THRESHOLD))
|
||
|
MPN_REDC_2 (rp, tp, mp, n, mip);
|
||
|
#else
|
||
|
if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_N_THRESHOLD))
|
||
|
MPN_REDC_1 (rp, tp, mp, n, mip[0]);
|
||
|
#endif
|
||
|
else
|
||
|
mpn_redc_n (rp, tp, mp, n, mip);
|
||
|
|
||
|
/* Precompute odd powers of b and put them in the temporary area at pp. */
|
||
|
for (i = (1 << (windowsize - 1)) - 1; i > 0; i--)
|
||
|
{
|
||
|
mpn_mul_n (tp, this_pp, rp, n);
|
||
|
this_pp += n;
|
||
|
#if WANT_REDC_2
|
||
|
if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))
|
||
|
MPN_REDC_1 (this_pp, tp, mp, n, mip[0]);
|
||
|
else if (BELOW_THRESHOLD (n, REDC_2_TO_REDC_N_THRESHOLD))
|
||
|
MPN_REDC_2 (this_pp, tp, mp, n, mip);
|
||
|
#else
|
||
|
if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_N_THRESHOLD))
|
||
|
MPN_REDC_1 (this_pp, tp, mp, n, mip[0]);
|
||
|
#endif
|
||
|
else
|
||
|
mpn_redc_n (this_pp, tp, mp, n, mip);
|
||
|
}
|
||
|
|
||
|
expbits = getbits (ep, ebi, windowsize);
|
||
|
if (ebi < windowsize)
|
||
|
ebi = 0;
|
||
|
else
|
||
|
ebi -= windowsize;
|
||
|
|
||
|
count_trailing_zeros (cnt, expbits);
|
||
|
ebi += cnt;
|
||
|
expbits >>= cnt;
|
||
|
|
||
|
MPN_COPY (rp, pp + n * (expbits >> 1), n);
|
||
|
|
||
|
#define INNERLOOP \
|
||
|
while (ebi != 0) \
|
||
|
{ \
|
||
|
while (getbit (ep, ebi) == 0) \
|
||
|
{ \
|
||
|
MPN_SQR (tp, rp, n); \
|
||
|
MPN_REDUCE (rp, tp, mp, n, mip); \
|
||
|
ebi--; \
|
||
|
if (ebi == 0) \
|
||
|
goto done; \
|
||
|
} \
|
||
|
\
|
||
|
/* The next bit of the exponent is 1. Now extract the largest \
|
||
|
block of bits <= windowsize, and such that the least \
|
||
|
significant bit is 1. */ \
|
||
|
\
|
||
|
expbits = getbits (ep, ebi, windowsize); \
|
||
|
this_windowsize = windowsize; \
|
||
|
if (ebi < windowsize) \
|
||
|
{ \
|
||
|
this_windowsize -= windowsize - ebi; \
|
||
|
ebi = 0; \
|
||
|
} \
|
||
|
else \
|
||
|
ebi -= windowsize; \
|
||
|
\
|
||
|
count_trailing_zeros (cnt, expbits); \
|
||
|
this_windowsize -= cnt; \
|
||
|
ebi += cnt; \
|
||
|
expbits >>= cnt; \
|
||
|
\
|
||
|
do \
|
||
|
{ \
|
||
|
MPN_SQR (tp, rp, n); \
|
||
|
MPN_REDUCE (rp, tp, mp, n, mip); \
|
||
|
this_windowsize--; \
|
||
|
} \
|
||
|
while (this_windowsize != 0); \
|
||
|
\
|
||
|
MPN_MUL_N (tp, rp, pp + n * (expbits >> 1), n); \
|
||
|
MPN_REDUCE (rp, tp, mp, n, mip); \
|
||
|
}
|
||
|
|
||
|
|
||
|
#if WANT_REDC_2
|
||
|
if (REDC_1_TO_REDC_2_THRESHOLD < MUL_KARATSUBA_THRESHOLD)
|
||
|
{
|
||
|
if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))
|
||
|
{
|
||
|
if (REDC_1_TO_REDC_2_THRESHOLD < SQR_BASECASE_THRESHOLD
|
||
|
|| BELOW_THRESHOLD (n, SQR_BASECASE_THRESHOLD))
|
||
|
{
|
||
|
#undef MPN_MUL_N
|
||
|
#undef MPN_SQR
|
||
|
#undef MPN_REDUCE
|
||
|
#define MPN_MUL_N(r,a,b,n) mpn_mul_basecase (r,a,n,b,n)
|
||
|
#define MPN_SQR(r,a,n) mpn_mul_basecase (r,a,n,a,n)
|
||
|
#define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_1 (rp, tp, mp, n, mip[0])
|
||
|
INNERLOOP;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
#undef MPN_MUL_N
|
||
|
#undef MPN_SQR
|
||
|
#undef MPN_REDUCE
|
||
|
#define MPN_MUL_N(r,a,b,n) mpn_mul_basecase (r,a,n,b,n)
|
||
|
#define MPN_SQR(r,a,n) mpn_sqr_basecase (r,a,n)
|
||
|
#define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_1 (rp, tp, mp, n, mip[0])
|
||
|
INNERLOOP;
|
||
|
}
|
||
|
}
|
||
|
else if (BELOW_THRESHOLD (n, MUL_KARATSUBA_THRESHOLD))
|
||
|
{
|
||
|
if (MUL_KARATSUBA_THRESHOLD < SQR_BASECASE_THRESHOLD
|
||
|
|| BELOW_THRESHOLD (n, SQR_BASECASE_THRESHOLD))
|
||
|
{
|
||
|
#undef MPN_MUL_N
|
||
|
#undef MPN_SQR
|
||
|
#undef MPN_REDUCE
|
||
|
#define MPN_MUL_N(r,a,b,n) mpn_mul_basecase (r,a,n,b,n)
|
||
|
#define MPN_SQR(r,a,n) mpn_mul_basecase (r,a,n,a,n)
|
||
|
#define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_2 (rp, tp, mp, n, mip)
|
||
|
INNERLOOP;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
#undef MPN_MUL_N
|
||
|
#undef MPN_SQR
|
||
|
#undef MPN_REDUCE
|
||
|
#define MPN_MUL_N(r,a,b,n) mpn_mul_basecase (r,a,n,b,n)
|
||
|
#define MPN_SQR(r,a,n) mpn_sqr_basecase (r,a,n)
|
||
|
#define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_2 (rp, tp, mp, n, mip)
|
||
|
INNERLOOP;
|
||
|
}
|
||
|
}
|
||
|
else if (BELOW_THRESHOLD (n, REDC_2_TO_REDC_N_THRESHOLD))
|
||
|
{
|
||
|
#undef MPN_MUL_N
|
||
|
#undef MPN_SQR
|
||
|
#undef MPN_REDUCE
|
||
|
#define MPN_MUL_N(r,a,b,n) mpn_mul_n (r,a,b,n)
|
||
|
#define MPN_SQR(r,a,n) mpn_sqr (r,a,n)
|
||
|
#define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_2 (rp, tp, mp, n, mip)
|
||
|
INNERLOOP;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
#undef MPN_MUL_N
|
||
|
#undef MPN_SQR
|
||
|
#undef MPN_REDUCE
|
||
|
#define MPN_MUL_N(r,a,b,n) mpn_mul_n (r,a,b,n)
|
||
|
#define MPN_SQR(r,a,n) mpn_sqr (r,a,n)
|
||
|
#define MPN_REDUCE(rp,tp,mp,n,mip) mpn_redc_n (rp, tp, mp, n, mip)
|
||
|
INNERLOOP;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (BELOW_THRESHOLD (n, MUL_KARATSUBA_THRESHOLD))
|
||
|
{
|
||
|
if (MUL_KARATSUBA_THRESHOLD < SQR_BASECASE_THRESHOLD
|
||
|
|| BELOW_THRESHOLD (n, SQR_BASECASE_THRESHOLD))
|
||
|
{
|
||
|
#undef MPN_MUL_N
|
||
|
#undef MPN_SQR
|
||
|
#undef MPN_REDUCE
|
||
|
#define MPN_MUL_N(r,a,b,n) mpn_mul_basecase (r,a,n,b,n)
|
||
|
#define MPN_SQR(r,a,n) mpn_mul_basecase (r,a,n,a,n)
|
||
|
#define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_1 (rp, tp, mp, n, mip[0])
|
||
|
INNERLOOP;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
#undef MPN_MUL_N
|
||
|
#undef MPN_SQR
|
||
|
#undef MPN_REDUCE
|
||
|
#define MPN_MUL_N(r,a,b,n) mpn_mul_basecase (r,a,n,b,n)
|
||
|
#define MPN_SQR(r,a,n) mpn_sqr_basecase (r,a,n)
|
||
|
#define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_1 (rp, tp, mp, n, mip[0])
|
||
|
INNERLOOP;
|
||
|
}
|
||
|
}
|
||
|
else if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))
|
||
|
{
|
||
|
#undef MPN_MUL_N
|
||
|
#undef MPN_SQR
|
||
|
#undef MPN_REDUCE
|
||
|
#define MPN_MUL_N(r,a,b,n) mpn_mul_n (r,a,b,n)
|
||
|
#define MPN_SQR(r,a,n) mpn_sqr (r,a,n)
|
||
|
#define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_1 (rp, tp, mp, n, mip[0])
|
||
|
INNERLOOP;
|
||
|
}
|
||
|
else if (BELOW_THRESHOLD (n, REDC_2_TO_REDC_N_THRESHOLD))
|
||
|
{
|
||
|
#undef MPN_MUL_N
|
||
|
#undef MPN_SQR
|
||
|
#undef MPN_REDUCE
|
||
|
#define MPN_MUL_N(r,a,b,n) mpn_mul_n (r,a,b,n)
|
||
|
#define MPN_SQR(r,a,n) mpn_sqr (r,a,n)
|
||
|
#define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_2 (rp, tp, mp, n, mip)
|
||
|
INNERLOOP;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
#undef MPN_MUL_N
|
||
|
#undef MPN_SQR
|
||
|
#undef MPN_REDUCE
|
||
|
#define MPN_MUL_N(r,a,b,n) mpn_mul_n (r,a,b,n)
|
||
|
#define MPN_SQR(r,a,n) mpn_sqr (r,a,n)
|
||
|
#define MPN_REDUCE(rp,tp,mp,n,mip) mpn_redc_n (rp, tp, mp, n, mip)
|
||
|
INNERLOOP;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#else /* WANT_REDC_2 */
|
||
|
|
||
|
if (REDC_1_TO_REDC_N_THRESHOLD < MUL_KARATSUBA_THRESHOLD)
|
||
|
{
|
||
|
if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_N_THRESHOLD))
|
||
|
{
|
||
|
if (REDC_1_TO_REDC_N_THRESHOLD < SQR_BASECASE_THRESHOLD
|
||
|
|| BELOW_THRESHOLD (n, SQR_BASECASE_THRESHOLD))
|
||
|
{
|
||
|
#undef MPN_MUL_N
|
||
|
#undef MPN_SQR
|
||
|
#undef MPN_REDUCE
|
||
|
#define MPN_MUL_N(r,a,b,n) mpn_mul_basecase (r,a,n,b,n)
|
||
|
#define MPN_SQR(r,a,n) mpn_mul_basecase (r,a,n,a,n)
|
||
|
#define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_1 (rp, tp, mp, n, mip[0])
|
||
|
INNERLOOP;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
#undef MPN_MUL_N
|
||
|
#undef MPN_SQR
|
||
|
#undef MPN_REDUCE
|
||
|
#define MPN_MUL_N(r,a,b,n) mpn_mul_basecase (r,a,n,b,n)
|
||
|
#define MPN_SQR(r,a,n) mpn_sqr_basecase (r,a,n)
|
||
|
#define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_1 (rp, tp, mp, n, mip[0])
|
||
|
INNERLOOP;
|
||
|
}
|
||
|
}
|
||
|
else if (BELOW_THRESHOLD (n, MUL_KARATSUBA_THRESHOLD))
|
||
|
{
|
||
|
if (MUL_KARATSUBA_THRESHOLD < SQR_BASECASE_THRESHOLD
|
||
|
|| BELOW_THRESHOLD (n, SQR_BASECASE_THRESHOLD))
|
||
|
{
|
||
|
#undef MPN_MUL_N
|
||
|
#undef MPN_SQR
|
||
|
#undef MPN_REDUCE
|
||
|
#define MPN_MUL_N(r,a,b,n) mpn_mul_basecase (r,a,n,b,n)
|
||
|
#define MPN_SQR(r,a,n) mpn_mul_basecase (r,a,n,a,n)
|
||
|
#define MPN_REDUCE(rp,tp,mp,n,mip) mpn_redc_n (rp, tp, mp, n, mip)
|
||
|
INNERLOOP;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
#undef MPN_MUL_N
|
||
|
#undef MPN_SQR
|
||
|
#undef MPN_REDUCE
|
||
|
#define MPN_MUL_N(r,a,b,n) mpn_mul_basecase (r,a,n,b,n)
|
||
|
#define MPN_SQR(r,a,n) mpn_sqr_basecase (r,a,n)
|
||
|
#define MPN_REDUCE(rp,tp,mp,n,mip) mpn_redc_n (rp, tp, mp, n, mip)
|
||
|
INNERLOOP;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
#undef MPN_MUL_N
|
||
|
#undef MPN_SQR
|
||
|
#undef MPN_REDUCE
|
||
|
#define MPN_MUL_N(r,a,b,n) mpn_mul_n (r,a,b,n)
|
||
|
#define MPN_SQR(r,a,n) mpn_sqr (r,a,n)
|
||
|
#define MPN_REDUCE(rp,tp,mp,n,mip) mpn_redc_n (rp, tp, mp, n, mip)
|
||
|
INNERLOOP;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (BELOW_THRESHOLD (n, MUL_KARATSUBA_THRESHOLD))
|
||
|
{
|
||
|
if (MUL_KARATSUBA_THRESHOLD < SQR_BASECASE_THRESHOLD
|
||
|
|| BELOW_THRESHOLD (n, SQR_BASECASE_THRESHOLD))
|
||
|
{
|
||
|
#undef MPN_MUL_N
|
||
|
#undef MPN_SQR
|
||
|
#undef MPN_REDUCE
|
||
|
#define MPN_MUL_N(r,a,b,n) mpn_mul_basecase (r,a,n,b,n)
|
||
|
#define MPN_SQR(r,a,n) mpn_mul_basecase (r,a,n,a,n)
|
||
|
#define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_1 (rp, tp, mp, n, mip[0])
|
||
|
INNERLOOP;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
#undef MPN_MUL_N
|
||
|
#undef MPN_SQR
|
||
|
#undef MPN_REDUCE
|
||
|
#define MPN_MUL_N(r,a,b,n) mpn_mul_basecase (r,a,n,b,n)
|
||
|
#define MPN_SQR(r,a,n) mpn_sqr_basecase (r,a,n)
|
||
|
#define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_1 (rp, tp, mp, n, mip[0])
|
||
|
INNERLOOP;
|
||
|
}
|
||
|
}
|
||
|
else if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_N_THRESHOLD))
|
||
|
{
|
||
|
#undef MPN_MUL_N
|
||
|
#undef MPN_SQR
|
||
|
#undef MPN_REDUCE
|
||
|
#define MPN_MUL_N(r,a,b,n) mpn_mul_n (r,a,b,n)
|
||
|
#define MPN_SQR(r,a,n) mpn_sqr (r,a,n)
|
||
|
#define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_1 (rp, tp, mp, n, mip[0])
|
||
|
INNERLOOP;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
#undef MPN_MUL_N
|
||
|
#undef MPN_SQR
|
||
|
#undef MPN_REDUCE
|
||
|
#define MPN_MUL_N(r,a,b,n) mpn_mul_n (r,a,b,n)
|
||
|
#define MPN_SQR(r,a,n) mpn_sqr (r,a,n)
|
||
|
#define MPN_REDUCE(rp,tp,mp,n,mip) mpn_redc_n (rp, tp, mp, n, mip)
|
||
|
INNERLOOP;
|
||
|
}
|
||
|
}
|
||
|
#endif /* WANT_REDC_2 */
|
||
|
|
||
|
done:
|
||
|
|
||
|
MPN_COPY (tp, rp, n);
|
||
|
MPN_ZERO (tp + n, n);
|
||
|
|
||
|
#if WANT_REDC_2
|
||
|
if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))
|
||
|
MPN_REDC_1 (rp, tp, mp, n, mip[0]);
|
||
|
else if (BELOW_THRESHOLD (n, REDC_2_TO_REDC_N_THRESHOLD))
|
||
|
MPN_REDC_2 (rp, tp, mp, n, mip);
|
||
|
#else
|
||
|
if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_N_THRESHOLD))
|
||
|
MPN_REDC_1 (rp, tp, mp, n, mip[0]);
|
||
|
#endif
|
||
|
else
|
||
|
mpn_redc_n (rp, tp, mp, n, mip);
|
||
|
|
||
|
if (mpn_cmp (rp, mp, n) >= 0)
|
||
|
mpn_sub_n (rp, rp, mp, n);
|
||
|
|
||
|
TMP_FREE;
|
||
|
}
|