mpir/mpn/generic/toom8h_mul.c

250 lines
7.8 KiB
C
Raw Normal View History

2010-02-16 18:47:07 -05:00
/* Implementation of the multiplication algorithm for Toom-Cook 8.5-way.
Contributed to the GNU project by Marco Bodrato.
THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE. IT IS ONLY
SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST
GUARANTEED THAT IT WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
Copyright 2009, 2010 Free Software Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. */
#include "mpir.h"
#include "gmp-impl.h"
#if GMP_NUMB_BITS < 29
#error Not implemented.
#endif
#if GMP_NUMB_BITS < 43
#define BIT_CORRECTION 1
#define CORRECTION_BITS GMP_NUMB_BITS
#else
#define BIT_CORRECTION 0
#define CORRECTION_BITS 0
#endif
#define TOOM8H_MUL_N_REC(p, a, b, n) \
do { \
2010-02-16 19:29:00 -05:00
if (BELOW_THRESHOLD (n, MUL_TOOM8H_THRESHOLD)) \
mpn_mul_n (p, a, b, n); \
2010-02-16 18:47:07 -05:00
else \
mpn_toom8h_mul (p, a, n, b, n); \
} while (0)
#define TOOM8H_MUL_REC(p, a, na, b, nb) \
do { mpn_mul (p, a, na, b, nb); \
} while (0)
/* Toom-8.5 , compute the product {pp,an+bn} <- {ap,an} * {bp,bn}
With: an >= bn >= 86, an*5 < bn * 11.
It _may_ work with bn<=?? and bn*?? < an*? < bn*??
Evaluate in: infinity, +8,-8,+4,-4,+2,-2,+1,-1,+1/2,-1/2,+1/4,-1/4,+1/8,-1/8,0.
*/
/* Estimate on needed scratch:
S(n) <= (n+7)\8*13+5+MAX(S((n+7)\8),1+2*(n+7)\8),
since n>80; S(n) <= ceil(log(n/10)/log(8))*(13+5)+n*15\8 < n*15\8 + lg2(n)*6
*/
void
mpn_toom8h_mul (mp_ptr pp,
mp_srcptr ap, mp_size_t an,
mp_srcptr bp, mp_size_t bn)
{
mp_size_t n, s, t;
int p, q, half;
int sign;
mp_ptr scratch;
TMP_DECL;
TMP_MARK;
/***************************** decomposition *******************************/
ASSERT (an >= bn);
/* Can not handle too small operands */
ASSERT (bn >= 86);
/* Can not handle too much unbalancement */
ASSERT (an*4 <= bn*13);
ASSERT (GMP_NUMB_BITS > 12*3 || an*4 <= bn*12);
ASSERT (GMP_NUMB_BITS > 11*3 || an*5 <= bn*11);
ASSERT (GMP_NUMB_BITS > 10*3 || an*6 <= bn*10);
ASSERT (GMP_NUMB_BITS > 9*3 || an*7 <= bn* 9);
/* Limit num/den is a rational number between
(16/15)^(log(6)/log(2*6-1)) and (16/15)^(log(8)/log(2*8-1)) */
#define LIMIT_numerator (21)
#define LIMIT_denominat (20)
if (LIKELY (an == bn) || an * (LIMIT_denominat>>1) < LIMIT_numerator * (bn>>1) ) /* is 8*... < 8*... */
{
half = 0;
n = 1 + ((an - 1)>>3);
p = q = 7;
s = an - p * n;
t = bn - q * n;
}
else
{
if (an * 13 < 16 * bn) /* (an*7*LIMIT_numerator<LIMIT_denominat*9*bn) */
{ p = 9; q = 8; }
else if (GMP_NUMB_BITS <= 9*3 ||
an *(LIMIT_denominat>>1) < (LIMIT_numerator/7*9) * (bn>>1))
{ p = 9; q = 7; }
else if (an * 10 < 33 * (bn>>1)) /* (an*3*LIMIT_numerator<LIMIT_denominat*5*bn) */
{ p =10; q = 7; }
else if (GMP_NUMB_BITS <= 10*3 ||
an * (LIMIT_denominat/5) < (LIMIT_numerator/3) * bn)
{ p =10; q = 6; }
else if (an * 6 < 13 * bn) /*(an * 5 * LIMIT_numerator < LIMIT_denominat *11 * bn)*/
{ p =11; q = 6; }
else if (GMP_NUMB_BITS <= 11*3 ||
an * 4 < 9 * bn)
{ p =11; q = 5; }
else if (an *(LIMIT_numerator/3) < LIMIT_denominat * bn ) /* is 4*... <12*... */
{ p =12; q = 5; }
else if (GMP_NUMB_BITS <= 12*3 ||
an * 9 < 28 * bn ) /* is 4*... <12*... */
{ p =12; q = 4; }
else
{ p =13; q = 4; }
half = (p+q)&1;
n = 1 + (q * an >= p * bn ? (an - 1) / (size_t) p : (bn - 1) / (size_t) q);
p--; q--;
s = an - p * n;
t = bn - q * n;
if(half) { /* Recover from badly chosen splitting */
if (s<1) {p--; s+=n; half=0;}
else if (t<1) {q--; t+=n; half=0;}
}
}
#undef LIMIT_numerator
#undef LIMIT_denominat
ASSERT (0 < s && s <= n);
ASSERT (0 < t && t <= n);
ASSERT (half || s + t > 3);
ASSERT (n > 2);
scratch = TMP_ALLOC_LIMBS(n*15 + GMP_LIMB_BITS*6);
#define r6 (pp + 3 * n) /* 3n+1 */
#define r4 (pp + 7 * n) /* 3n+1 */
#define r2 (pp +11 * n) /* 3n+1 */
#define r0 (pp +15 * n) /* s+t <= 2*n */
#define r7 (scratch) /* 3n+1 */
#define r5 (scratch + 3 * n + 1) /* 3n+1 */
#define r3 (scratch + 6 * n + 2) /* 3n+1 */
#define r1 (scratch + 9 * n + 3) /* 3n+1 */
#define v0 (pp +11 * n) /* n+1 */
#define v1 (pp +12 * n+1) /* n+1 */
#define v2 (pp +13 * n+2) /* n+1 */
#define v3 (scratch +12 * n + 4) /* n+1 */
#define wsi (scratch +12 * n + 4) /* 3n+1 */
/********************** evaluation and recursive calls *********************/
/* $\pm1/8$ */
sign = mpn_toom_eval_pm2rexp (v2, v0, p, ap, n, s, 3, pp) ^
mpn_toom_eval_pm2rexp (v3, v1, q, bp, n, t, 3, pp);
TOOM8H_MUL_N_REC(pp, v0, v1, n + 1); /* A(-1/8)*B(-1/8)*8^. */
TOOM8H_MUL_N_REC(r7, v2, v3, n + 1); /* A(+1/8)*B(+1/8)*8^. */
mpn_toom_couple_handling (r7, 2 * n + 1 + BIT_CORRECTION, pp, sign, n, 3*(1+half), 3*(half));
/* $\pm1/4$ */
sign = mpn_toom_eval_pm2rexp (v2, v0, p, ap, n, s, 2, pp) ^
mpn_toom_eval_pm2rexp (v3, v1, q, bp, n, t, 2, pp);
TOOM8H_MUL_N_REC(pp, v0, v1, n + 1); /* A(-1/4)*B(-1/4)*4^. */
TOOM8H_MUL_N_REC(r5, v2, v3, n + 1); /* A(+1/4)*B(+1/4)*4^. */
mpn_toom_couple_handling (r5, 2 * n + 1, pp, sign, n, 2*(1+half), 2*(half));
/* $\pm2$ */
sign = mpn_toom_eval_pm2 (v2, v0, p, ap, n, s, pp) ^
mpn_toom_eval_pm2 (v3, v1, q, bp, n, t, pp);
TOOM8H_MUL_N_REC(pp, v0, v1, n + 1); /* A(-2)*B(-2) */
TOOM8H_MUL_N_REC(r3, v2, v3, n + 1); /* A(+2)*B(+2) */
mpn_toom_couple_handling (r3, 2 * n + 1, pp, sign, n, 1, 2);
/* $\pm8$ */
sign = mpn_toom_eval_pm2exp (v2, v0, p, ap, n, s, 3, pp) ^
mpn_toom_eval_pm2exp (v3, v1, q, bp, n, t, 3, pp);
TOOM8H_MUL_N_REC(pp, v0, v1, n + 1); /* A(-8)*B(-8) */
TOOM8H_MUL_N_REC(r1, v2, v3, n + 1); /* A(+8)*B(+8) */
mpn_toom_couple_handling (r1, 2 * n + 1 + BIT_CORRECTION, pp, sign, n, 3, 6);
/* $\pm1/2$ */
sign = mpn_toom_eval_pm2rexp (v2, v0, p, ap, n, s, 1, pp) ^
mpn_toom_eval_pm2rexp (v3, v1, q, bp, n, t, 1, pp);
TOOM8H_MUL_N_REC(pp, v0, v1, n + 1); /* A(-1/2)*B(-1/2)*2^. */
TOOM8H_MUL_N_REC(r6, v2, v3, n + 1); /* A(+1/2)*B(+1/2)*2^. */
mpn_toom_couple_handling (r6, 2 * n + 1, pp, sign, n, 1+half, half);
/* $\pm1$ */
sign = mpn_toom_eval_pm1 (v2, v0, p, ap, n, s, pp);
if (q == 3)
sign ^= mpn_toom_eval_dgr3_pm1 (v3, v1, bp, n, t, pp);
else
sign ^= mpn_toom_eval_pm1 (v3, v1, q, bp, n, t, pp);
TOOM8H_MUL_N_REC(pp, v0, v1, n + 1); /* A(-1)*B(-1) */
TOOM8H_MUL_N_REC(r4, v2, v3, n + 1); /* A(1)*B(1) */
mpn_toom_couple_handling (r4, 2 * n + 1, pp, sign, n, 0, 0);
/* $\pm4$ */
sign = mpn_toom_eval_pm2exp (v2, v0, p, ap, n, s, 2, pp) ^
mpn_toom_eval_pm2exp (v3, v1, q, bp, n, t, 2, pp);
TOOM8H_MUL_N_REC(pp, v0, v1, n + 1); /* A(-4)*B(-4) */
TOOM8H_MUL_N_REC(r2, v2, v3, n + 1); /* A(+4)*B(+4) */
mpn_toom_couple_handling (r2, 2 * n + 1, pp, sign, n, 2, 4);
#undef v0
#undef v1
#undef v2
#undef v3
/* A(0)*B(0) */
TOOM8H_MUL_N_REC(pp, ap, bp, n);
/* Infinity */
if( half != 0) {
if(s>t) {
TOOM8H_MUL_REC(r0, ap + p * n, s, bp + q * n, t);
} else {
TOOM8H_MUL_REC(r0, bp + q * n, t, ap + p * n, s);
};
};
2010-02-16 19:29:00 -05:00
mpn_toom_interpolate_16pts (pp, r1, r3, r5, r7, n, s+t, half, wsi);
2010-02-16 18:47:07 -05:00
TMP_FREE;
#undef r0
#undef r1
#undef r2
#undef r3
#undef r4
#undef r5
#undef r6
#undef wsi
}