mpir/mpn/generic/get_str.c

539 lines
16 KiB
C
Raw Normal View History

/* mpn_get_str -- Convert {UP,USIZE} to a base BASE string in STR.
Contributed to the GNU project by Torbjorn Granlund.
THE FUNCTIONS IN THIS FILE, EXCEPT mpn_get_str, ARE INTERNAL WITH A MUTABLE
INTERFACE. IT IS ONLY SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. IN
FACT, IT IS ALMOST GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE
GNU MP RELEASE.
Copyright 1991, 1992, 1993, 1994, 1996, 2000, 2001, 2002, 2004, 2006, 2007,
2008 Free Software Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. */
#include "gmp.h"
#include "gmp-impl.h"
#include "longlong.h"
/* Conversion of U {up,un} to a string in base b. Internally, we convert to
base B = b^m, the largest power of b that fits a limb. Basic algorithms:
A) Divide U repeatedly by B, generating a quotient and remainder, until the
quotient becomes zero. The remainders hold the converted digits. Digits
come out from right to left. (Used in mpn_sb_get_str.)
B) Divide U by b^g, for g such that 1/b <= U/b^g < 1, generating a fraction.
Then develop digits by multiplying the fraction repeatedly by b. Digits
come out from left to right. (Currently not used herein, except for in
code for converting single limbs to individual digits.)
C) Compute B^1, B^2, B^4, ..., B^s, for s such that B^s is just above
sqrt(U). Then divide U by B^s, generating quotient and remainder.
Recursively convert the quotient, then the remainder, using the
precomputed powers. Digits come out from left to right. (Used in
mpn_dc_get_str.)
When using algorithm C, algorithm B might be suitable for basecase code,
since the required b^g power will be readily accessible.
Optimization ideas:
1. The recursive function of (C) could use less temporary memory. The powtab
allocation could be trimmed with some computation, and the tmp area could
be reduced, or perhaps eliminated if up is reused for both quotient and
remainder (it is currently used just for remainder).
2. Store the powers of (C) in normalized form, with the normalization count.
Quotients will usually need to be left-shifted before each divide, and
remainders will either need to be left-shifted of right-shifted.
3. In the code for developing digits from a single limb, we could avoid using
a full umul_ppmm except for the first (or first few) digits, provided base
is even. Subsequent digits can be developed using plain multiplication.
(This saves on register-starved machines (read x86) and on all machines
that generate the upper product half using a separate instruction (alpha,
powerpc, IA-64) or lacks such support altogether (sparc64, hppa64).
4. Separate mpn_dc_get_str basecase code from code for small conversions. The
former code will have the exact right power readily available in the
powtab parameter for dividing the current number into a fraction. Convert
that using algorithm B.
5. Completely avoid division. Compute the inverses of the powers now in
powtab instead of the actual powers.
6. Decrease powtab allocation for even bases. E.g. for base 10 we could save
about 30% (1-log(5)/log(10)).
Basic structure of (C):
mpn_get_str:
if POW2_P (n)
...
else
if (un < GET_STR_PRECOMPUTE_THRESHOLD)
mpn_sb_get_str (str, base, up, un);
else
precompute_power_tables
mpn_dc_get_str
mpn_dc_get_str:
mpn_tdiv_qr
if (qn < GET_STR_DC_THRESHOLD)
mpn_sb_get_str
else
mpn_dc_get_str
if (rn < GET_STR_DC_THRESHOLD)
mpn_sb_get_str
else
mpn_dc_get_str
The reason for the two threshold values is the cost of
precompute_power_tables. GET_STR_PRECOMPUTE_THRESHOLD will be considerably
larger than GET_STR_PRECOMPUTE_THRESHOLD. */
/* The x86s and m68020 have a quotient and remainder "div" instruction and
gcc recognises an adjacent "/" and "%" can be combined using that.
Elsewhere "/" and "%" are either separate instructions, or separate
libgcc calls (which unfortunately gcc as of version 3.0 doesn't combine).
A multiply and subtract should be faster than a "%" in those cases. */
#if HAVE_HOST_CPU_FAMILY_x86 \
|| HAVE_HOST_CPU_m68020 \
|| HAVE_HOST_CPU_m68030 \
|| HAVE_HOST_CPU_m68040 \
|| HAVE_HOST_CPU_m68060 \
|| HAVE_HOST_CPU_m68360 /* CPU32 */
#define udiv_qrnd_unnorm(q,r,n,d) \
do { \
mp_limb_t __q = (n) / (d); \
mp_limb_t __r = (n) % (d); \
(q) = __q; \
(r) = __r; \
} while (0)
#else
#define udiv_qrnd_unnorm(q,r,n,d) \
do { \
mp_limb_t __q = (n) / (d); \
mp_limb_t __r = (n) - __q*(d); \
(q) = __q; \
(r) = __r; \
} while (0)
#endif
/* Convert {up,un} to a string in base base, and put the result in str.
Generate len characters, possibly padding with zeros to the left. If len is
zero, generate as many characters as required. Return a pointer immediately
after the last digit of the result string. Complexity is O(un^2); intended
for small conversions. */
static unsigned char *
mpn_sb_get_str (unsigned char *str, size_t len,
mp_ptr up, mp_size_t un, int base)
{
mp_limb_t rl, ul;
unsigned char *s;
size_t l;
/* Allocate memory for largest possible string, given that we only get here
for operands with un < GET_STR_PRECOMPUTE_THRESHOLD and that the smallest
base is 3. 7/11 is an approximation to 1/log2(3). */
#if TUNE_PROGRAM_BUILD
#define BUF_ALLOC (GET_STR_THRESHOLD_LIMIT * GMP_LIMB_BITS * 7 / 11)
#else
#define BUF_ALLOC (GET_STR_PRECOMPUTE_THRESHOLD * GMP_LIMB_BITS * 7 / 11)
#endif
unsigned char buf[BUF_ALLOC];
#if TUNE_PROGRAM_BUILD
mp_limb_t rp[GET_STR_THRESHOLD_LIMIT];
#else
mp_limb_t rp[GET_STR_PRECOMPUTE_THRESHOLD];
#endif
if (base == 10)
{
/* Special case code for base==10 so that the compiler has a chance to
optimize things. */
MPN_COPY (rp + 1, up, un);
s = buf + BUF_ALLOC;
while (un > 1)
{
int i;
mp_limb_t frac, digit;
MPN_DIVREM_OR_PREINV_DIVREM_1 (rp, (mp_size_t) 1, rp + 1, un,
MP_BASES_BIG_BASE_10,
MP_BASES_BIG_BASE_INVERTED_10,
MP_BASES_NORMALIZATION_STEPS_10);
un -= rp[un] == 0;
frac = (rp[0] + 1) << GMP_NAIL_BITS;
s -= MP_BASES_CHARS_PER_LIMB_10;
#if HAVE_HOST_CPU_FAMILY_x86
/* The code below turns out to be a bit slower for x86 using gcc.
Use plain code. */
i = MP_BASES_CHARS_PER_LIMB_10;
do
{
umul_ppmm (digit, frac, frac, 10);
*s++ = digit;
}
while (--i);
#else
/* Use the fact that 10 in binary is 1010, with the lowest bit 0.
After a few umul_ppmm, we will have accumulated enough low zeros
to use a plain multiply. */
if (MP_BASES_NORMALIZATION_STEPS_10 == 0)
{
umul_ppmm (digit, frac, frac, 10);
*s++ = digit;
}
if (MP_BASES_NORMALIZATION_STEPS_10 <= 1)
{
umul_ppmm (digit, frac, frac, 10);
*s++ = digit;
}
if (MP_BASES_NORMALIZATION_STEPS_10 <= 2)
{
umul_ppmm (digit, frac, frac, 10);
*s++ = digit;
}
if (MP_BASES_NORMALIZATION_STEPS_10 <= 3)
{
umul_ppmm (digit, frac, frac, 10);
*s++ = digit;
}
i = (MP_BASES_CHARS_PER_LIMB_10 - ((MP_BASES_NORMALIZATION_STEPS_10 < 4)
? (4-MP_BASES_NORMALIZATION_STEPS_10)
: 0));
frac = (frac + 0xf) >> 4;
do
{
frac *= 10;
digit = frac >> (GMP_LIMB_BITS - 4);
*s++ = digit;
frac &= (~(mp_limb_t) 0) >> 4;
}
while (--i);
#endif
s -= MP_BASES_CHARS_PER_LIMB_10;
}
ul = rp[1];
while (ul != 0)
{
udiv_qrnd_unnorm (ul, rl, ul, 10);
*--s = rl;
}
}
else /* not base 10 */
{
unsigned chars_per_limb;
mp_limb_t big_base, big_base_inverted;
unsigned normalization_steps;
chars_per_limb = mp_bases[base].chars_per_limb;
big_base = mp_bases[base].big_base;
big_base_inverted = mp_bases[base].big_base_inverted;
count_leading_zeros (normalization_steps, big_base);
MPN_COPY (rp + 1, up, un);
s = buf + BUF_ALLOC;
while (un > 1)
{
int i;
mp_limb_t frac;
MPN_DIVREM_OR_PREINV_DIVREM_1 (rp, (mp_size_t) 1, rp + 1, un,
big_base, big_base_inverted,
normalization_steps);
un -= rp[un] == 0;
frac = (rp[0] + 1) << GMP_NAIL_BITS;
s -= chars_per_limb;
i = chars_per_limb;
do
{
mp_limb_t digit;
umul_ppmm (digit, frac, frac, base);
*s++ = digit;
}
while (--i);
s -= chars_per_limb;
}
ul = rp[1];
while (ul != 0)
{
udiv_qrnd_unnorm (ul, rl, ul, base);
*--s = rl;
}
}
l = buf + BUF_ALLOC - s;
while (l < len)
{
*str++ = 0;
len--;
}
while (l != 0)
{
*str++ = *s++;
l--;
}
return str;
}
/* Convert {UP,UN} to a string with a base as represented in POWTAB, and put
the string in STR. Generate LEN characters, possibly padding with zeros to
the left. If LEN is zero, generate as many characters as required.
Return a pointer immediately after the last digit of the result string.
This uses divide-and-conquer and is intended for large conversions. */
static unsigned char *
mpn_dc_get_str (unsigned char *str, size_t len,
mp_ptr up, mp_size_t un,
const powers_t *powtab, mp_ptr tmp)
{
if (BELOW_THRESHOLD (un, GET_STR_DC_THRESHOLD))
{
if (un != 0)
str = mpn_sb_get_str (str, len, up, un, powtab->base);
else
{
while (len != 0)
{
*str++ = 0;
len--;
}
}
}
else
{
mp_ptr pwp, qp, rp;
mp_size_t pwn, qn;
mp_size_t sn;
pwp = powtab->p;
pwn = powtab->n;
sn = powtab->shift;
if (un < pwn + sn || (un == pwn + sn && mpn_cmp (up + sn, pwp, un - sn) < 0))
{
str = mpn_dc_get_str (str, len, up, un, powtab - 1, tmp);
}
else
{
qp = tmp; /* (un - pwn + 1) limbs for qp */
rp = up; /* pwn limbs for rp; overwrite up area */
mpn_tdiv_qr (qp, rp + sn, 0L, up + sn, un - sn, pwp, pwn);
qn = un - sn - pwn; qn += qp[qn] != 0; /* quotient size */
ASSERT (qn < pwn + sn || (qn == pwn + sn && mpn_cmp (qp + sn, pwp, pwn) < 0));
if (len != 0)
len = len - powtab->digits_in_base;
str = mpn_dc_get_str (str, len, qp, qn, powtab - 1, tmp + qn);
str = mpn_dc_get_str (str, powtab->digits_in_base, rp, pwn + sn, powtab - 1, tmp);
}
}
return str;
}
/* There are no leading zeros on the digits generated at str, but that's not
currently a documented feature. */
size_t
mpn_get_str (unsigned char *str, int base, mp_ptr up, mp_size_t un)
{
mp_ptr powtab_mem, powtab_mem_ptr;
mp_limb_t big_base;
size_t digits_in_base;
powers_t powtab[GMP_LIMB_BITS];
int pi;
mp_size_t n;
mp_ptr p, t;
size_t out_len;
mp_ptr tmp;
TMP_DECL;
/* Special case zero, as the code below doesn't handle it. */
if (un == 0)
{
str[0] = 0;
return 1;
}
if (POW2_P (base))
{
/* The base is a power of 2. Convert from most significant end. */
mp_limb_t n1, n0;
int bits_per_digit = mp_bases[base].big_base;
int cnt;
int bit_pos;
mp_size_t i;
unsigned char *s = str;
mp_bitcnt_t bits;
n1 = up[un - 1];
count_leading_zeros (cnt, n1);
/* BIT_POS should be R when input ends in least significant nibble,
R + bits_per_digit * n when input ends in nth least significant
nibble. */
bits = (mp_bitcnt_t) GMP_NUMB_BITS * un - cnt + GMP_NAIL_BITS;
cnt = bits % bits_per_digit;
if (cnt != 0)
bits += bits_per_digit - cnt;
bit_pos = bits - (mp_bitcnt_t) (un - 1) * GMP_NUMB_BITS;
/* Fast loop for bit output. */
i = un - 1;
for (;;)
{
bit_pos -= bits_per_digit;
while (bit_pos >= 0)
{
*s++ = (n1 >> bit_pos) & ((1 << bits_per_digit) - 1);
bit_pos -= bits_per_digit;
}
i--;
if (i < 0)
break;
n0 = (n1 << -bit_pos) & ((1 << bits_per_digit) - 1);
n1 = up[i];
bit_pos += GMP_NUMB_BITS;
*s++ = n0 | (n1 >> bit_pos);
}
return s - str;
}
/* General case. The base is not a power of 2. */
if (BELOW_THRESHOLD (un, GET_STR_PRECOMPUTE_THRESHOLD))
return mpn_sb_get_str (str, (size_t) 0, up, un, base) - str;
TMP_MARK;
/* Allocate one large block for the powers of big_base. */
powtab_mem = TMP_BALLOC_LIMBS (mpn_dc_get_str_powtab_alloc (un));
powtab_mem_ptr = powtab_mem;
/* Compute a table of powers, were the largest power is >= sqrt(U). */
big_base = mp_bases[base].big_base;
digits_in_base = mp_bases[base].chars_per_limb;
{
mp_size_t n_pows, xn, pn, exptab[GMP_LIMB_BITS], bexp;
mp_limb_t cy;
mp_size_t shift;
n_pows = 0;
xn = 1 + un*(mp_bases[base].chars_per_bit_exactly*GMP_NUMB_BITS)/mp_bases[base].chars_per_limb;
for (pn = xn; pn != 1; pn = (pn + 1) >> 1)
{
exptab[n_pows] = pn;
n_pows++;
}
exptab[n_pows] = 1;
powtab[0].p = &big_base;
powtab[0].n = 1;
powtab[0].digits_in_base = digits_in_base;
powtab[0].base = base;
powtab[0].shift = 0;
powtab[1].p = powtab_mem_ptr; powtab_mem_ptr += 2;
powtab[1].p[0] = big_base;
powtab[1].n = 1;
powtab[1].digits_in_base = digits_in_base;
powtab[1].base = base;
powtab[1].shift = 0;
n = 1;
p = &big_base;
bexp = 1;
shift = 0;
for (pi = 2; pi < n_pows; pi++)
{
t = powtab_mem_ptr;
powtab_mem_ptr += 2 * n + 2;
ASSERT_ALWAYS (powtab_mem_ptr < powtab_mem + mpn_dc_get_str_powtab_alloc (un));
mpn_sqr (t, p, n);
digits_in_base *= 2;
n *= 2; n -= t[n - 1] == 0;
bexp *= 2;
if (bexp + 1 < exptab[n_pows - pi])
{
digits_in_base += mp_bases[base].chars_per_limb;
cy = mpn_mul_1 (t, t, n, big_base);
t[n] = cy;
n += cy != 0;
bexp += 1;
}
shift *= 2;
/* Strip low zero limbs. */
while (t[0] == 0)
{
t++;
n--;
shift++;
}
p = t;
powtab[pi].p = p;
powtab[pi].n = n;
powtab[pi].digits_in_base = digits_in_base;
powtab[pi].base = base;
powtab[pi].shift = shift;
}
for (pi = 1; pi < n_pows; pi++)
{
t = powtab[pi].p;
n = powtab[pi].n;
cy = mpn_mul_1 (t, t, n, big_base);
t[n] = cy;
n += cy != 0;
if (t[0] == 0)
{
powtab[pi].p = t + 1;
n--;
powtab[pi].shift++;
}
powtab[pi].n = n;
powtab[pi].digits_in_base += mp_bases[base].chars_per_limb;
}
#if 0
{ int i;
printf ("Computed table values for base=%d, un=%d, xn=%d:\n", base, un, xn);
for (i = 0; i < n_pows; i++)
printf ("%2d: %10ld %10ld %11ld %ld\n", i, exptab[n_pows-i], powtab[i].n, powtab[i].digits_in_base, powtab[i].shift);
}
#endif
}
/* Using our precomputed powers, now in powtab[], convert our number. */
tmp = TMP_BALLOC_LIMBS (mpn_dc_get_str_itch (un));
out_len = mpn_dc_get_str (str, 0, up, un, powtab - 1 + pi, tmp) - str;
TMP_FREE;
return out_len;
}