1587 lines
39 KiB
C
1587 lines
39 KiB
C
/*
|
|
* Copyright (c) 1997 Greg Ward Larson
|
|
* Copyright (c) 1997 Silicon Graphics, Inc.
|
|
*
|
|
* Permission to use, copy, modify, distribute, and sell this software and
|
|
* its documentation for any purpose is hereby granted without fee, provided
|
|
* that (i) the above copyright notices and this permission notice appear in
|
|
* all copies of the software and related documentation, and (ii) the names of
|
|
* Sam Leffler, Greg Larson and Silicon Graphics may not be used in any
|
|
* advertising or publicity relating to the software without the specific,
|
|
* prior written permission of Sam Leffler, Greg Larson and Silicon Graphics.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
|
|
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
|
|
*
|
|
* IN NO EVENT SHALL SAM LEFFLER, GREG LARSON OR SILICON GRAPHICS BE LIABLE
|
|
* FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
|
|
* OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
|
* WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
|
|
* LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
|
* OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include "tiffiop.h"
|
|
#ifdef LOGLUV_SUPPORT
|
|
|
|
/*
|
|
* TIFF Library.
|
|
* LogLuv compression support for high dynamic range images.
|
|
*
|
|
* Contributed by Greg Larson.
|
|
*
|
|
* LogLuv image support uses the TIFF library to store 16 or 10-bit
|
|
* log luminance values with 8 bits each of u and v or a 14-bit index.
|
|
*
|
|
* The codec can take as input and produce as output 32-bit IEEE float values
|
|
* as well as 16-bit integer values. A 16-bit luminance is interpreted
|
|
* as a sign bit followed by a 15-bit integer that is converted
|
|
* to and from a linear magnitude using the transformation:
|
|
*
|
|
* L = 2^( (Le+.5)/256 - 64 ) # real from 15-bit
|
|
*
|
|
* Le = floor( 256*(log2(L) + 64) ) # 15-bit from real
|
|
*
|
|
* The actual conversion to world luminance units in candelas per sq. meter
|
|
* requires an additional multiplier, which is stored in the TIFFTAG_STONITS.
|
|
* This value is usually set such that a reasonable exposure comes from
|
|
* clamping decoded luminances above 1 to 1 in the displayed image.
|
|
*
|
|
* The 16-bit values for u and v may be converted to real values by dividing
|
|
* each by 32768. (This allows for negative values, which aren't useful as
|
|
* far as we know, but are left in case of future improvements in human
|
|
* color vision.)
|
|
*
|
|
* Conversion from (u,v), which is actually the CIE (u',v') system for
|
|
* you color scientists, is accomplished by the following transformation:
|
|
*
|
|
* u = 4*x / (-2*x + 12*y + 3)
|
|
* v = 9*y / (-2*x + 12*y + 3)
|
|
*
|
|
* x = 9*u / (6*u - 16*v + 12)
|
|
* y = 4*v / (6*u - 16*v + 12)
|
|
*
|
|
* This process is greatly simplified by passing 32-bit IEEE floats
|
|
* for each of three CIE XYZ coordinates. The codec then takes care
|
|
* of conversion to and from LogLuv, though the application is still
|
|
* responsible for interpreting the TIFFTAG_STONITS calibration factor.
|
|
*
|
|
* By definition, a CIE XYZ vector of [1 1 1] corresponds to a neutral white
|
|
* point of (x,y)=(1/3,1/3). However, most color systems assume some other
|
|
* white point, such as D65, and an absolute color conversion to XYZ then
|
|
* to another color space with a different white point may introduce an
|
|
* unwanted color cast to the image. It is often desirable, therefore, to
|
|
* perform a white point conversion that maps the input white to [1 1 1]
|
|
* in XYZ, then record the original white point using the TIFFTAG_WHITEPOINT
|
|
* tag value. A decoder that demands absolute color calibration may use
|
|
* this white point tag to get back the original colors, but usually it
|
|
* will be ignored and the new white point will be used instead that
|
|
* matches the output color space.
|
|
*
|
|
* Pixel information is compressed into one of two basic encodings, depending
|
|
* on the setting of the compression tag, which is one of COMPRESSION_SGILOG
|
|
* or COMPRESSION_SGILOG24. For COMPRESSION_SGILOG, greyscale data is
|
|
* stored as:
|
|
*
|
|
* 1 15
|
|
* |-+---------------|
|
|
*
|
|
* COMPRESSION_SGILOG color data is stored as:
|
|
*
|
|
* 1 15 8 8
|
|
* |-+---------------|--------+--------|
|
|
* S Le ue ve
|
|
*
|
|
* For the 24-bit COMPRESSION_SGILOG24 color format, the data is stored as:
|
|
*
|
|
* 10 14
|
|
* |----------|--------------|
|
|
* Le' Ce
|
|
*
|
|
* There is no sign bit in the 24-bit case, and the (u,v) chromaticity is
|
|
* encoded as an index for optimal color resolution. The 10 log bits are
|
|
* defined by the following conversions:
|
|
*
|
|
* L = 2^((Le'+.5)/64 - 12) # real from 10-bit
|
|
*
|
|
* Le' = floor( 64*(log2(L) + 12) ) # 10-bit from real
|
|
*
|
|
* The 10 bits of the smaller format may be converted into the 15 bits of
|
|
* the larger format by multiplying by 4 and adding 13314. Obviously,
|
|
* a smaller range of magnitudes is covered (about 5 orders of magnitude
|
|
* instead of 38), and the lack of a sign bit means that negative luminances
|
|
* are not allowed. (Well, they aren't allowed in the real world, either,
|
|
* but they are useful for certain types of image processing.)
|
|
*
|
|
* The desired user format is controlled by the setting the internal
|
|
* pseudo tag TIFFTAG_SGILOGDATAFMT to one of:
|
|
* SGILOGDATAFMT_FLOAT = IEEE 32-bit float XYZ values
|
|
* SGILOGDATAFMT_16BIT = 16-bit integer encodings of logL, u and v
|
|
* Raw data i/o is also possible using:
|
|
* SGILOGDATAFMT_RAW = 32-bit unsigned integer with encoded pixel
|
|
* In addition, the following decoding is provided for ease of display:
|
|
* SGILOGDATAFMT_8BIT = 8-bit default RGB gamma-corrected values
|
|
*
|
|
* For grayscale images, we provide the following data formats:
|
|
* SGILOGDATAFMT_FLOAT = IEEE 32-bit float Y values
|
|
* SGILOGDATAFMT_16BIT = 16-bit integer w/ encoded luminance
|
|
* SGILOGDATAFMT_8BIT = 8-bit gray monitor values
|
|
*
|
|
* Note that the COMPRESSION_SGILOG applies a simple run-length encoding
|
|
* scheme by separating the logL, u and v bytes for each row and applying
|
|
* a PackBits type of compression. Since the 24-bit encoding is not
|
|
* adaptive, the 32-bit color format takes less space in many cases.
|
|
*
|
|
* Further control is provided over the conversion from higher-resolution
|
|
* formats to final encoded values through the pseudo tag
|
|
* TIFFTAG_SGILOGENCODE:
|
|
* SGILOGENCODE_NODITHER = do not dither encoded values
|
|
* SGILOGENCODE_RANDITHER = apply random dithering during encoding
|
|
*
|
|
* The default value of this tag is SGILOGENCODE_NODITHER for
|
|
* COMPRESSION_SGILOG to maximize run-length encoding and
|
|
* SGILOGENCODE_RANDITHER for COMPRESSION_SGILOG24 to turn
|
|
* quantization errors into noise.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
|
|
/*
|
|
* State block for each open TIFF
|
|
* file using LogLuv compression/decompression.
|
|
*/
|
|
typedef struct logLuvState LogLuvState;
|
|
|
|
struct logLuvState {
|
|
int user_datafmt; /* user data format */
|
|
int encode_meth; /* encoding method */
|
|
int pixel_size; /* bytes per pixel */
|
|
|
|
tidata_t* tbuf; /* translation buffer */
|
|
int tbuflen; /* buffer length */
|
|
void (*tfunc)(LogLuvState*, tidata_t, int);
|
|
|
|
TIFFVSetMethod vgetparent; /* super-class method */
|
|
TIFFVSetMethod vsetparent; /* super-class method */
|
|
};
|
|
|
|
#define DecoderState(tif) ((LogLuvState*) (tif)->tif_data)
|
|
#define EncoderState(tif) ((LogLuvState*) (tif)->tif_data)
|
|
|
|
#define N(a) (sizeof(a)/sizeof(a[0]))
|
|
#define SGILOGDATAFMT_UNKNOWN -1
|
|
|
|
#define MINRUN 4 /* minimum run length */
|
|
|
|
/*
|
|
* Decode a string of 16-bit gray pixels.
|
|
*/
|
|
static int
|
|
LogL16Decode(TIFF* tif, tidata_t op, tsize_t occ, tsample_t s)
|
|
{
|
|
LogLuvState* sp = DecoderState(tif);
|
|
int shft, i, npixels;
|
|
u_char* bp;
|
|
int16* tp;
|
|
int16 b;
|
|
int cc, rc;
|
|
|
|
assert(s == 0);
|
|
assert(sp != NULL);
|
|
|
|
npixels = occ / sp->pixel_size;
|
|
|
|
if (sp->user_datafmt == SGILOGDATAFMT_16BIT)
|
|
tp = (int16*) op;
|
|
else {
|
|
assert(sp->tbuflen >= npixels);
|
|
tp = (int16*) sp->tbuf;
|
|
}
|
|
_TIFFmemset((tdata_t) tp, 0, npixels*sizeof (tp[0]));
|
|
|
|
bp = (u_char*) tif->tif_rawcp;
|
|
cc = tif->tif_rawcc;
|
|
/* get each byte string */
|
|
for (shft = 2*8; (shft -= 8) >= 0; ) {
|
|
for (i = 0; i < npixels && cc > 0; )
|
|
if (*bp >= 128) { /* run */
|
|
rc = *bp++ + (2-128);
|
|
b = (int16)*bp++ << shft;
|
|
cc -= 2;
|
|
while (rc--)
|
|
tp[i++] |= b;
|
|
} else { /* non-run */
|
|
rc = *bp++; /* nul is noop */
|
|
while (--cc && rc--)
|
|
tp[i++] |= (int16)*bp++ << shft;
|
|
}
|
|
if (i != npixels) {
|
|
TIFFError(tif->tif_name,
|
|
"LogL16Decode: Not enough data at row %d (short %d pixels)",
|
|
tif->tif_row, npixels - i);
|
|
tif->tif_rawcp = (tidata_t) bp;
|
|
tif->tif_rawcc = cc;
|
|
return (0);
|
|
}
|
|
}
|
|
(*sp->tfunc)(sp, op, npixels);
|
|
tif->tif_rawcp = (tidata_t) bp;
|
|
tif->tif_rawcc = cc;
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Decode a string of 24-bit pixels.
|
|
*/
|
|
static int
|
|
LogLuvDecode24(TIFF* tif, tidata_t op, tsize_t occ, tsample_t s)
|
|
{
|
|
LogLuvState* sp = DecoderState(tif);
|
|
int cc, i, npixels;
|
|
u_char* bp;
|
|
uint32* tp;
|
|
|
|
assert(s == 0);
|
|
assert(sp != NULL);
|
|
|
|
npixels = occ / sp->pixel_size;
|
|
|
|
if (sp->user_datafmt == SGILOGDATAFMT_RAW)
|
|
tp = (uint32 *)op;
|
|
else {
|
|
assert(sp->tbuflen >= npixels);
|
|
tp = (uint32 *) sp->tbuf;
|
|
}
|
|
/* copy to array of uint32 */
|
|
bp = (u_char*) tif->tif_rawcp;
|
|
cc = tif->tif_rawcc;
|
|
for (i = 0; i < npixels && cc > 0; i++) {
|
|
tp[i] = bp[0] << 16 | bp[1] << 8 | bp[2];
|
|
bp += 3;
|
|
cc -= 3;
|
|
}
|
|
tif->tif_rawcp = (tidata_t) bp;
|
|
tif->tif_rawcc = cc;
|
|
if (i != npixels) {
|
|
TIFFError(tif->tif_name,
|
|
"LogLuvDecode24: Not enough data at row %d (short %d pixels)",
|
|
tif->tif_row, npixels - i);
|
|
return (0);
|
|
}
|
|
(*sp->tfunc)(sp, op, npixels);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Decode a string of 32-bit pixels.
|
|
*/
|
|
static int
|
|
LogLuvDecode32(TIFF* tif, tidata_t op, tsize_t occ, tsample_t s)
|
|
{
|
|
LogLuvState* sp;
|
|
int shft, i, npixels;
|
|
u_char* bp;
|
|
uint32* tp;
|
|
uint32 b;
|
|
int cc, rc;
|
|
|
|
assert(s == 0);
|
|
sp = DecoderState(tif);
|
|
assert(sp != NULL);
|
|
|
|
npixels = occ / sp->pixel_size;
|
|
|
|
if (sp->user_datafmt == SGILOGDATAFMT_RAW)
|
|
tp = (uint32*) op;
|
|
else {
|
|
assert(sp->tbuflen >= npixels);
|
|
tp = (uint32*) sp->tbuf;
|
|
}
|
|
_TIFFmemset((tdata_t) tp, 0, npixels*sizeof (tp[0]));
|
|
|
|
bp = (u_char*) tif->tif_rawcp;
|
|
cc = tif->tif_rawcc;
|
|
/* get each byte string */
|
|
for (shft = 4*8; (shft -= 8) >= 0; ) {
|
|
for (i = 0; i < npixels && cc > 0; )
|
|
if (*bp >= 128) { /* run */
|
|
rc = *bp++ + (2-128);
|
|
b = (uint32)*bp++ << shft;
|
|
cc -= 2;
|
|
while (rc--)
|
|
tp[i++] |= b;
|
|
} else { /* non-run */
|
|
rc = *bp++; /* nul is noop */
|
|
while (--cc && rc--)
|
|
tp[i++] |= (uint32)*bp++ << shft;
|
|
}
|
|
if (i != npixels) {
|
|
TIFFError(tif->tif_name,
|
|
"LogLuvDecode32: Not enough data at row %d (short %d pixels)",
|
|
tif->tif_row, npixels - i);
|
|
tif->tif_rawcp = (tidata_t) bp;
|
|
tif->tif_rawcc = cc;
|
|
return (0);
|
|
}
|
|
}
|
|
(*sp->tfunc)(sp, op, npixels);
|
|
tif->tif_rawcp = (tidata_t) bp;
|
|
tif->tif_rawcc = cc;
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Decode a strip of pixels. We break it into rows to
|
|
* maintain synchrony with the encode algorithm, which
|
|
* is row by row.
|
|
*/
|
|
static int
|
|
LogLuvDecodeStrip(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
|
|
{
|
|
tsize_t rowlen = TIFFScanlineSize(tif);
|
|
|
|
assert(cc%rowlen == 0);
|
|
while (cc && (*tif->tif_decoderow)(tif, bp, rowlen, s))
|
|
bp += rowlen, cc -= rowlen;
|
|
return (cc == 0);
|
|
}
|
|
|
|
/*
|
|
* Decode a tile of pixels. We break it into rows to
|
|
* maintain synchrony with the encode algorithm, which
|
|
* is row by row.
|
|
*/
|
|
static int
|
|
LogLuvDecodeTile(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
|
|
{
|
|
tsize_t rowlen = TIFFTileRowSize(tif);
|
|
|
|
assert(cc%rowlen == 0);
|
|
while (cc && (*tif->tif_decoderow)(tif, bp, rowlen, s))
|
|
bp += rowlen, cc -= rowlen;
|
|
return (cc == 0);
|
|
}
|
|
|
|
/*
|
|
* Encode a row of 16-bit pixels.
|
|
*/
|
|
static int
|
|
LogL16Encode(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
|
|
{
|
|
LogLuvState* sp = EncoderState(tif);
|
|
int shft, i, j, npixels;
|
|
tidata_t op;
|
|
int16* tp;
|
|
int16 b;
|
|
int occ, rc=0, mask, beg;
|
|
|
|
assert(s == 0);
|
|
assert(sp != NULL);
|
|
npixels = cc / sp->pixel_size;
|
|
|
|
if (sp->user_datafmt == SGILOGDATAFMT_16BIT)
|
|
tp = (int16*) bp;
|
|
else {
|
|
tp = (int16*) sp->tbuf;
|
|
assert(sp->tbuflen >= npixels);
|
|
(*sp->tfunc)(sp, bp, npixels);
|
|
}
|
|
/* compress each byte string */
|
|
op = tif->tif_rawcp;
|
|
occ = tif->tif_rawdatasize - tif->tif_rawcc;
|
|
for (shft = 2*8; (shft -= 8) >= 0; )
|
|
for (i = 0; i < npixels; i += rc) {
|
|
if (occ < 4) {
|
|
tif->tif_rawcp = op;
|
|
tif->tif_rawcc = tif->tif_rawdatasize - occ;
|
|
if (!TIFFFlushData1(tif))
|
|
return (-1);
|
|
op = tif->tif_rawcp;
|
|
occ = tif->tif_rawdatasize - tif->tif_rawcc;
|
|
}
|
|
mask = 0xff << shft; /* find next run */
|
|
for (beg = i; beg < npixels; beg += rc) {
|
|
b = tp[beg] & mask;
|
|
rc = 1;
|
|
while (rc < 127+2 && beg+rc < npixels &&
|
|
(tp[beg+rc] & mask) == b)
|
|
rc++;
|
|
if (rc >= MINRUN)
|
|
break; /* long enough */
|
|
}
|
|
if (beg-i > 1 && beg-i < MINRUN) {
|
|
b = tp[i] & mask; /* check short run */
|
|
j = i+1;
|
|
while ((tp[j++] & mask) == b)
|
|
if (j == beg) {
|
|
*op++ = 128-2+j-i;
|
|
*op++ = b >> shft;
|
|
occ -= 2;
|
|
i = beg;
|
|
break;
|
|
}
|
|
}
|
|
while (i < beg) { /* write out non-run */
|
|
if ((j = beg-i) > 127) j = 127;
|
|
if (occ < j+3) {
|
|
tif->tif_rawcp = op;
|
|
tif->tif_rawcc = tif->tif_rawdatasize - occ;
|
|
if (!TIFFFlushData1(tif))
|
|
return (-1);
|
|
op = tif->tif_rawcp;
|
|
occ = tif->tif_rawdatasize - tif->tif_rawcc;
|
|
}
|
|
*op++ = j; occ--;
|
|
while (j--) {
|
|
*op++ = tp[i++] >> shft & 0xff;
|
|
occ--;
|
|
}
|
|
}
|
|
if (rc >= MINRUN) { /* write out run */
|
|
*op++ = 128-2+rc;
|
|
*op++ = tp[beg] >> shft & 0xff;
|
|
occ -= 2;
|
|
} else
|
|
rc = 0;
|
|
}
|
|
tif->tif_rawcp = op;
|
|
tif->tif_rawcc = tif->tif_rawdatasize - occ;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Encode a row of 24-bit pixels.
|
|
*/
|
|
static int
|
|
LogLuvEncode24(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
|
|
{
|
|
LogLuvState* sp = EncoderState(tif);
|
|
int i, npixels, occ;
|
|
tidata_t op;
|
|
uint32* tp;
|
|
|
|
assert(s == 0);
|
|
assert(sp != NULL);
|
|
npixels = cc / sp->pixel_size;
|
|
|
|
if (sp->user_datafmt == SGILOGDATAFMT_RAW)
|
|
tp = (uint32*) bp;
|
|
else {
|
|
tp = (uint32*) sp->tbuf;
|
|
assert(sp->tbuflen >= npixels);
|
|
(*sp->tfunc)(sp, bp, npixels);
|
|
}
|
|
/* write out encoded pixels */
|
|
op = tif->tif_rawcp;
|
|
occ = tif->tif_rawdatasize - tif->tif_rawcc;
|
|
for (i = npixels; i--; ) {
|
|
if (occ < 3) {
|
|
tif->tif_rawcp = op;
|
|
tif->tif_rawcc = tif->tif_rawdatasize - occ;
|
|
if (!TIFFFlushData1(tif))
|
|
return (-1);
|
|
op = tif->tif_rawcp;
|
|
occ = tif->tif_rawdatasize - tif->tif_rawcc;
|
|
}
|
|
*op++ = (tidataval_t)(*tp >> 16);
|
|
*op++ = (tidataval_t)(*tp >> 8 & 0xff);
|
|
*op++ = (tidataval_t)(*tp++ & 0xff);
|
|
occ -= 3;
|
|
}
|
|
tif->tif_rawcp = op;
|
|
tif->tif_rawcc = tif->tif_rawdatasize - occ;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Encode a row of 32-bit pixels.
|
|
*/
|
|
static int
|
|
LogLuvEncode32(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
|
|
{
|
|
LogLuvState* sp = EncoderState(tif);
|
|
int shft, i, j, npixels;
|
|
tidata_t op;
|
|
uint32* tp;
|
|
uint32 b;
|
|
int occ, rc=0, mask, beg;
|
|
|
|
assert(s == 0);
|
|
assert(sp != NULL);
|
|
|
|
npixels = cc / sp->pixel_size;
|
|
|
|
if (sp->user_datafmt == SGILOGDATAFMT_RAW)
|
|
tp = (uint32*) bp;
|
|
else {
|
|
tp = (uint32*) sp->tbuf;
|
|
assert(sp->tbuflen >= npixels);
|
|
(*sp->tfunc)(sp, bp, npixels);
|
|
}
|
|
/* compress each byte string */
|
|
op = tif->tif_rawcp;
|
|
occ = tif->tif_rawdatasize - tif->tif_rawcc;
|
|
for (shft = 4*8; (shft -= 8) >= 0; )
|
|
for (i = 0; i < npixels; i += rc) {
|
|
if (occ < 4) {
|
|
tif->tif_rawcp = op;
|
|
tif->tif_rawcc = tif->tif_rawdatasize - occ;
|
|
if (!TIFFFlushData1(tif))
|
|
return (-1);
|
|
op = tif->tif_rawcp;
|
|
occ = tif->tif_rawdatasize - tif->tif_rawcc;
|
|
}
|
|
mask = 0xff << shft; /* find next run */
|
|
for (beg = i; beg < npixels; beg += rc) {
|
|
b = tp[beg] & mask;
|
|
rc = 1;
|
|
while (rc < 127+2 && beg+rc < npixels &&
|
|
(tp[beg+rc] & mask) == b)
|
|
rc++;
|
|
if (rc >= MINRUN)
|
|
break; /* long enough */
|
|
}
|
|
if (beg-i > 1 && beg-i < MINRUN) {
|
|
b = tp[i] & mask; /* check short run */
|
|
j = i+1;
|
|
while ((tp[j++] & mask) == b)
|
|
if (j == beg) {
|
|
*op++ = (tidataval_t)(128-2+j-i);
|
|
*op++ = (tidataval_t)(b >> shft);
|
|
occ -= 2;
|
|
i = beg;
|
|
break;
|
|
}
|
|
}
|
|
while (i < beg) { /* write out non-run */
|
|
if ((j = beg-i) > 127) j = 127;
|
|
if (occ < j+3) {
|
|
tif->tif_rawcp = op;
|
|
tif->tif_rawcc = tif->tif_rawdatasize - occ;
|
|
if (!TIFFFlushData1(tif))
|
|
return (-1);
|
|
op = tif->tif_rawcp;
|
|
occ = tif->tif_rawdatasize - tif->tif_rawcc;
|
|
}
|
|
*op++ = j; occ--;
|
|
while (j--) {
|
|
*op++ = (tidataval_t)(tp[i++] >> shft & 0xff);
|
|
occ--;
|
|
}
|
|
}
|
|
if (rc >= MINRUN) { /* write out run */
|
|
*op++ = 128-2+rc;
|
|
*op++ = (tidataval_t)(tp[beg] >> shft & 0xff);
|
|
occ -= 2;
|
|
} else
|
|
rc = 0;
|
|
}
|
|
tif->tif_rawcp = op;
|
|
tif->tif_rawcc = tif->tif_rawdatasize - occ;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Encode a strip of pixels. We break it into rows to
|
|
* avoid encoding runs across row boundaries.
|
|
*/
|
|
static int
|
|
LogLuvEncodeStrip(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
|
|
{
|
|
tsize_t rowlen = TIFFScanlineSize(tif);
|
|
|
|
assert(cc%rowlen == 0);
|
|
while (cc && (*tif->tif_encoderow)(tif, bp, rowlen, s) == 0)
|
|
bp += rowlen, cc -= rowlen;
|
|
return (cc == 0);
|
|
}
|
|
|
|
/*
|
|
* Encode a tile of pixels. We break it into rows to
|
|
* avoid encoding runs across row boundaries.
|
|
*/
|
|
static int
|
|
LogLuvEncodeTile(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
|
|
{
|
|
tsize_t rowlen = TIFFTileRowSize(tif);
|
|
|
|
assert(cc%rowlen == 0);
|
|
while (cc && (*tif->tif_encoderow)(tif, bp, rowlen, s) == 0)
|
|
bp += rowlen, cc -= rowlen;
|
|
return (cc == 0);
|
|
}
|
|
|
|
/*
|
|
* Encode/Decode functions for converting to and from user formats.
|
|
*/
|
|
|
|
#include "uvcode.h"
|
|
|
|
#ifndef UVSCALE
|
|
#define U_NEU 0.210526316
|
|
#define V_NEU 0.473684211
|
|
#define UVSCALE 410.
|
|
#endif
|
|
|
|
#ifndef M_LN2
|
|
#define M_LN2 0.69314718055994530942
|
|
#endif
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846
|
|
#endif
|
|
#define log2(x) ((1./M_LN2)*log(x))
|
|
#define exp2(x) exp(M_LN2*(x))
|
|
|
|
#define itrunc(x,m) ((m)==SGILOGENCODE_NODITHER ? \
|
|
(int)(x) : \
|
|
(int)((x) + rand()*(1./RAND_MAX) - .5))
|
|
|
|
#if !LOGLUV_PUBLIC
|
|
static
|
|
#endif
|
|
double
|
|
LogL16toY(int p16) /* compute luminance from 16-bit LogL */
|
|
{
|
|
int Le = p16 & 0x7fff;
|
|
double Y;
|
|
|
|
if (!Le)
|
|
return (0.);
|
|
Y = exp(M_LN2/256.*(Le+.5) - M_LN2*64.);
|
|
return (!(p16 & 0x8000) ? Y : -Y);
|
|
}
|
|
|
|
#if !LOGLUV_PUBLIC
|
|
static
|
|
#endif
|
|
int
|
|
LogL16fromY(double Y, int em) /* get 16-bit LogL from Y */
|
|
{
|
|
if (Y >= 1.8371976e19)
|
|
return (0x7fff);
|
|
if (Y <= -1.8371976e19)
|
|
return (0xffff);
|
|
if (Y > 5.4136769e-20)
|
|
return itrunc(256.*(log2(Y) + 64.), em);
|
|
if (Y < -5.4136769e-20)
|
|
return (~0x7fff | itrunc(256.*(log2(-Y) + 64.), em));
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
L16toY(LogLuvState* sp, tidata_t op, int n)
|
|
{
|
|
int16* l16 = (int16*) sp->tbuf;
|
|
float* yp = (float*) op;
|
|
|
|
while (n-- > 0)
|
|
*yp++ = (float)LogL16toY(*l16++);
|
|
}
|
|
|
|
static void
|
|
L16toGry(LogLuvState* sp, tidata_t op, int n)
|
|
{
|
|
int16* l16 = (int16*) sp->tbuf;
|
|
uint8* gp = (uint8*) op;
|
|
|
|
while (n-- > 0) {
|
|
double Y = LogL16toY(*l16++);
|
|
*gp++ = (Y <= 0.) ? 0 : (Y >= 1.) ? 255 : (int)(256.*sqrt(Y));
|
|
}
|
|
}
|
|
|
|
static void
|
|
L16fromY(LogLuvState* sp, tidata_t op, int n)
|
|
{
|
|
int16* l16 = (int16*) sp->tbuf;
|
|
float* yp = (float*) op;
|
|
|
|
while (n-- > 0)
|
|
*l16++ = LogL16fromY(*yp++, sp->encode_meth);
|
|
}
|
|
|
|
#if !LOGLUV_PUBLIC
|
|
static
|
|
#endif
|
|
void
|
|
XYZtoRGB24(float xyz[3], uint8 rgb[3])
|
|
{
|
|
double r, g, b;
|
|
/* assume CCIR-709 primaries */
|
|
r = 2.690*xyz[0] + -1.276*xyz[1] + -0.414*xyz[2];
|
|
g = -1.022*xyz[0] + 1.978*xyz[1] + 0.044*xyz[2];
|
|
b = 0.061*xyz[0] + -0.224*xyz[1] + 1.163*xyz[2];
|
|
/* assume 2.0 gamma for speed */
|
|
/* could use integer sqrt approx., but this is probably faster */
|
|
rgb[0] = (r <= 0.) ? 0 : (r >= 1.) ? 255 : (int)(256.*sqrt(r));
|
|
rgb[1] = (g <= 0.) ? 0 : (g >= 1.) ? 255 : (int)(256.*sqrt(g));
|
|
rgb[2] = (b <= 0.) ? 0 : (b >= 1.) ? 255 : (int)(256.*sqrt(b));
|
|
}
|
|
|
|
#if !LOGLUV_PUBLIC
|
|
static
|
|
#endif
|
|
double
|
|
LogL10toY(int p10) /* compute luminance from 10-bit LogL */
|
|
{
|
|
if (p10 == 0)
|
|
return (0.);
|
|
return (exp(M_LN2/64.*(p10+.5) - M_LN2*12.));
|
|
}
|
|
|
|
#if !LOGLUV_PUBLIC
|
|
static
|
|
#endif
|
|
int
|
|
LogL10fromY(double Y, int em) /* get 10-bit LogL from Y */
|
|
{
|
|
if (Y >= 15.742)
|
|
return (0x3ff);
|
|
else if (Y <= .00024283)
|
|
return (0);
|
|
else
|
|
return itrunc(64.*(log2(Y) + 12.), em);
|
|
}
|
|
|
|
#define NANGLES 100
|
|
#define uv2ang(u, v) ( (NANGLES*.499999999/M_PI) \
|
|
* atan2((v)-V_NEU,(u)-U_NEU) + .5*NANGLES )
|
|
|
|
static int
|
|
oog_encode(double u, double v) /* encode out-of-gamut chroma */
|
|
{
|
|
static int oog_table[NANGLES];
|
|
static int initialized = 0;
|
|
register int i;
|
|
|
|
if (!initialized) { /* set up perimeter table */
|
|
double eps[NANGLES], ua, va, ang, epsa;
|
|
int ui, vi, ustep;
|
|
for (i = NANGLES; i--; )
|
|
eps[i] = 2.;
|
|
for (vi = UV_NVS; vi--; ) {
|
|
va = UV_VSTART + (vi+.5)*UV_SQSIZ;
|
|
ustep = uv_row[vi].nus-1;
|
|
if (vi == UV_NVS-1 || vi == 0 || ustep <= 0)
|
|
ustep = 1;
|
|
for (ui = uv_row[vi].nus-1; ui >= 0; ui -= ustep) {
|
|
ua = uv_row[vi].ustart + (ui+.5)*UV_SQSIZ;
|
|
ang = uv2ang(ua, va);
|
|
i = (int) ang;
|
|
epsa = fabs(ang - (i+.5));
|
|
if (epsa < eps[i]) {
|
|
oog_table[i] = uv_row[vi].ncum + ui;
|
|
eps[i] = epsa;
|
|
}
|
|
}
|
|
}
|
|
for (i = NANGLES; i--; ) /* fill any holes */
|
|
if (eps[i] > 1.5) {
|
|
int i1, i2;
|
|
for (i1 = 1; i1 < NANGLES/2; i1++)
|
|
if (eps[(i+i1)%NANGLES] < 1.5)
|
|
break;
|
|
for (i2 = 1; i2 < NANGLES/2; i2++)
|
|
if (eps[(i+NANGLES-i2)%NANGLES] < 1.5)
|
|
break;
|
|
if (i1 < i2)
|
|
oog_table[i] =
|
|
oog_table[(i+i1)%NANGLES];
|
|
else
|
|
oog_table[i] =
|
|
oog_table[(i+NANGLES-i2)%NANGLES];
|
|
}
|
|
initialized = 1;
|
|
}
|
|
i = (int) uv2ang(u, v); /* look up hue angle */
|
|
return (oog_table[i]);
|
|
}
|
|
|
|
#undef uv2ang
|
|
#undef NANGLES
|
|
|
|
#if !LOGLUV_PUBLIC
|
|
static
|
|
#endif
|
|
int
|
|
uv_encode(double u, double v, int em) /* encode (u',v') coordinates */
|
|
{
|
|
register int vi, ui;
|
|
|
|
if (v < UV_VSTART)
|
|
return oog_encode(u, v);
|
|
vi = itrunc((v - UV_VSTART)*(1./UV_SQSIZ), em);
|
|
if (vi >= UV_NVS)
|
|
return oog_encode(u, v);
|
|
if (u < uv_row[vi].ustart)
|
|
return oog_encode(u, v);
|
|
ui = itrunc((u - uv_row[vi].ustart)*(1./UV_SQSIZ), em);
|
|
if (ui >= uv_row[vi].nus)
|
|
return oog_encode(u, v);
|
|
|
|
return (uv_row[vi].ncum + ui);
|
|
}
|
|
|
|
#if !LOGLUV_PUBLIC
|
|
static
|
|
#endif
|
|
int
|
|
uv_decode(double *up, double *vp, int c) /* decode (u',v') index */
|
|
{
|
|
int upper, lower;
|
|
register int ui, vi;
|
|
|
|
if (c < 0 || c >= UV_NDIVS)
|
|
return (-1);
|
|
lower = 0; /* binary search */
|
|
upper = UV_NVS;
|
|
while (upper - lower > 1) {
|
|
vi = (lower + upper) >> 1;
|
|
ui = c - uv_row[vi].ncum;
|
|
if (ui > 0)
|
|
lower = vi;
|
|
else if (ui < 0)
|
|
upper = vi;
|
|
else {
|
|
lower = vi;
|
|
break;
|
|
}
|
|
}
|
|
vi = lower;
|
|
ui = c - uv_row[vi].ncum;
|
|
*up = uv_row[vi].ustart + (ui+.5)*UV_SQSIZ;
|
|
*vp = UV_VSTART + (vi+.5)*UV_SQSIZ;
|
|
return (0);
|
|
}
|
|
|
|
#if !LOGLUV_PUBLIC
|
|
static
|
|
#endif
|
|
void
|
|
LogLuv24toXYZ(uint32 p, float XYZ[3])
|
|
{
|
|
int Ce;
|
|
double L, u, v, s, x, y;
|
|
/* decode luminance */
|
|
L = LogL10toY(p>>14 & 0x3ff);
|
|
if (L <= 0.) {
|
|
XYZ[0] = XYZ[1] = XYZ[2] = 0.;
|
|
return;
|
|
}
|
|
/* decode color */
|
|
Ce = p & 0x3fff;
|
|
if (uv_decode(&u, &v, Ce) < 0) {
|
|
u = U_NEU; v = V_NEU;
|
|
}
|
|
s = 1./(6.*u - 16.*v + 12.);
|
|
x = 9.*u * s;
|
|
y = 4.*v * s;
|
|
/* convert to XYZ */
|
|
XYZ[0] = (float)(x/y * L);
|
|
XYZ[1] = (float)L;
|
|
XYZ[2] = (float)((1.-x-y)/y * L);
|
|
}
|
|
|
|
#if !LOGLUV_PUBLIC
|
|
static
|
|
#endif
|
|
uint32
|
|
LogLuv24fromXYZ(float XYZ[3], int em)
|
|
{
|
|
int Le, Ce;
|
|
double u, v, s;
|
|
/* encode luminance */
|
|
Le = LogL10fromY(XYZ[1], em);
|
|
/* encode color */
|
|
s = XYZ[0] + 15.*XYZ[1] + 3.*XYZ[2];
|
|
if (!Le || s <= 0.) {
|
|
u = U_NEU;
|
|
v = V_NEU;
|
|
} else {
|
|
u = 4.*XYZ[0] / s;
|
|
v = 9.*XYZ[1] / s;
|
|
}
|
|
Ce = uv_encode(u, v, em);
|
|
if (Ce < 0) /* never happens */
|
|
Ce = uv_encode(U_NEU, V_NEU, SGILOGENCODE_NODITHER);
|
|
/* combine encodings */
|
|
return (Le << 14 | Ce);
|
|
}
|
|
|
|
static void
|
|
Luv24toXYZ(LogLuvState* sp, tidata_t op, int n)
|
|
{
|
|
uint32* luv = (uint32*) sp->tbuf;
|
|
float* xyz = (float*) op;
|
|
|
|
while (n-- > 0) {
|
|
LogLuv24toXYZ(*luv, xyz);
|
|
xyz += 3;
|
|
luv++;
|
|
}
|
|
}
|
|
|
|
static void
|
|
Luv24toLuv48(LogLuvState* sp, tidata_t op, int n)
|
|
{
|
|
uint32* luv = (uint32*) sp->tbuf;
|
|
int16* luv3 = (int16*) op;
|
|
|
|
while (n-- > 0) {
|
|
double u, v;
|
|
|
|
*luv3++ = (int16)((*luv >> 12 & 0xffd) + 13314);
|
|
if (uv_decode(&u, &v, *luv&0x3fff) < 0) {
|
|
u = U_NEU;
|
|
v = V_NEU;
|
|
}
|
|
*luv3++ = (int16)(u * (1L<<15));
|
|
*luv3++ = (int16)(v * (1L<<15));
|
|
luv++;
|
|
}
|
|
}
|
|
|
|
static void
|
|
Luv24toRGB(LogLuvState* sp, tidata_t op, int n)
|
|
{
|
|
uint32* luv = (uint32*) sp->tbuf;
|
|
uint8* rgb = (uint8*) op;
|
|
|
|
while (n-- > 0) {
|
|
float xyz[3];
|
|
|
|
LogLuv24toXYZ(*luv++, xyz);
|
|
XYZtoRGB24(xyz, rgb);
|
|
rgb += 3;
|
|
}
|
|
}
|
|
|
|
static void
|
|
Luv24fromXYZ(LogLuvState* sp, tidata_t op, int n)
|
|
{
|
|
uint32* luv = (uint32*) sp->tbuf;
|
|
float* xyz = (float*) op;
|
|
|
|
while (n-- > 0) {
|
|
*luv++ = LogLuv24fromXYZ(xyz, sp->encode_meth);
|
|
xyz += 3;
|
|
}
|
|
}
|
|
|
|
static void
|
|
Luv24fromLuv48(LogLuvState* sp, tidata_t op, int n)
|
|
{
|
|
uint32* luv = (uint32*) sp->tbuf;
|
|
int16* luv3 = (int16*) op;
|
|
|
|
while (n-- > 0) {
|
|
int Le, Ce;
|
|
|
|
if (luv3[0] <= 0)
|
|
Le = 0;
|
|
else if (luv3[0] >= (1<<12)+3314)
|
|
Le = (1<<10) - 1;
|
|
else if (sp->encode_meth == SGILOGENCODE_NODITHER)
|
|
Le = (luv3[0]-3314) >> 2;
|
|
else
|
|
Le = itrunc(.25*(luv3[0]-3314.), sp->encode_meth);
|
|
|
|
Ce = uv_encode((luv[1]+.5)/(1<<15), (luv[2]+.5)/(1<<15),
|
|
sp->encode_meth);
|
|
if (Ce < 0) /* never happens */
|
|
Ce = uv_encode(U_NEU, V_NEU, SGILOGENCODE_NODITHER);
|
|
*luv++ = (uint32)Le << 14 | Ce;
|
|
luv3 += 3;
|
|
}
|
|
}
|
|
|
|
#if !LOGLUV_PUBLIC
|
|
static
|
|
#endif
|
|
void
|
|
LogLuv32toXYZ(uint32 p, float XYZ[3])
|
|
{
|
|
double L, u, v, s, x, y;
|
|
/* decode luminance */
|
|
L = LogL16toY((int)p >> 16);
|
|
if (L <= 0.) {
|
|
XYZ[0] = XYZ[1] = XYZ[2] = 0.;
|
|
return;
|
|
}
|
|
/* decode color */
|
|
u = 1./UVSCALE * ((p>>8 & 0xff) + .5);
|
|
v = 1./UVSCALE * ((p & 0xff) + .5);
|
|
s = 1./(6.*u - 16.*v + 12.);
|
|
x = 9.*u * s;
|
|
y = 4.*v * s;
|
|
/* convert to XYZ */
|
|
XYZ[0] = (float)(x/y * L);
|
|
XYZ[1] = (float)L;
|
|
XYZ[2] = (float)((1.-x-y)/y * L);
|
|
}
|
|
|
|
#if !LOGLUV_PUBLIC
|
|
static
|
|
#endif
|
|
uint32
|
|
LogLuv32fromXYZ(float XYZ[3], int em)
|
|
{
|
|
unsigned int Le, ue, ve;
|
|
double u, v, s;
|
|
/* encode luminance */
|
|
Le = (unsigned int)LogL16fromY(XYZ[1], em);
|
|
/* encode color */
|
|
s = XYZ[0] + 15.*XYZ[1] + 3.*XYZ[2];
|
|
if (!Le || s <= 0.) {
|
|
u = U_NEU;
|
|
v = V_NEU;
|
|
} else {
|
|
u = 4.*XYZ[0] / s;
|
|
v = 9.*XYZ[1] / s;
|
|
}
|
|
if (u <= 0.) ue = 0;
|
|
else ue = itrunc(UVSCALE*u, em);
|
|
if (ue > 255) ue = 255;
|
|
if (v <= 0.) ve = 0;
|
|
else ve = itrunc(UVSCALE*v, em);
|
|
if (ve > 255) ve = 255;
|
|
/* combine encodings */
|
|
return (Le << 16 | ue << 8 | ve);
|
|
}
|
|
|
|
static void
|
|
Luv32toXYZ(LogLuvState* sp, tidata_t op, int n)
|
|
{
|
|
uint32* luv = (uint32*) sp->tbuf;
|
|
float* xyz = (float*) op;
|
|
|
|
while (n-- > 0) {
|
|
LogLuv32toXYZ(*luv++, xyz);
|
|
xyz += 3;
|
|
}
|
|
}
|
|
|
|
static void
|
|
Luv32toLuv48(LogLuvState* sp, tidata_t op, int n)
|
|
{
|
|
uint32* luv = (uint32*) sp->tbuf;
|
|
int16* luv3 = (int16*) op;
|
|
|
|
while (n-- > 0) {
|
|
double u, v;
|
|
|
|
*luv3++ = (int16)(*luv >> 16);
|
|
u = 1./UVSCALE * ((*luv>>8 & 0xff) + .5);
|
|
v = 1./UVSCALE * ((*luv & 0xff) + .5);
|
|
*luv3++ = (int16)(u * (1L<<15));
|
|
*luv3++ = (int16)(v * (1L<<15));
|
|
luv++;
|
|
}
|
|
}
|
|
|
|
static void
|
|
Luv32toRGB(LogLuvState* sp, tidata_t op, int n)
|
|
{
|
|
uint32* luv = (uint32*) sp->tbuf;
|
|
uint8* rgb = (uint8*) op;
|
|
|
|
while (n-- > 0) {
|
|
float xyz[3];
|
|
|
|
LogLuv32toXYZ(*luv++, xyz);
|
|
XYZtoRGB24(xyz, rgb);
|
|
rgb += 3;
|
|
}
|
|
}
|
|
|
|
static void
|
|
Luv32fromXYZ(LogLuvState* sp, tidata_t op, int n)
|
|
{
|
|
uint32* luv = (uint32*) sp->tbuf;
|
|
float* xyz = (float*) op;
|
|
|
|
while (n-- > 0) {
|
|
*luv++ = LogLuv32fromXYZ(xyz, sp->encode_meth);
|
|
xyz += 3;
|
|
}
|
|
}
|
|
|
|
static void
|
|
Luv32fromLuv48(LogLuvState* sp, tidata_t op, int n)
|
|
{
|
|
uint32* luv = (uint32*) sp->tbuf;
|
|
int16* luv3 = (int16*) op;
|
|
|
|
if (sp->encode_meth == SGILOGENCODE_NODITHER) {
|
|
while (n-- > 0) {
|
|
*luv++ = (uint32)luv3[0] << 16 |
|
|
(luv3[1]*(uint32)(UVSCALE+.5) >> 7 & 0xff00) |
|
|
(luv3[2]*(uint32)(UVSCALE+.5) >> 15 & 0xff);
|
|
luv3 += 3;
|
|
}
|
|
return;
|
|
}
|
|
while (n-- > 0) {
|
|
*luv++ = (uint32)luv3[0] << 16 |
|
|
(itrunc(luv3[1]*(UVSCALE/(1<<15)), sp->encode_meth) << 8 & 0xff00) |
|
|
(itrunc(luv3[2]*(UVSCALE/(1<<15)), sp->encode_meth) & 0xff);
|
|
luv3 += 3;
|
|
}
|
|
}
|
|
|
|
static void
|
|
_logLuvNop(LogLuvState* sp, tidata_t op, int n)
|
|
{
|
|
(void) sp; (void) op; (void) n;
|
|
}
|
|
|
|
static int
|
|
LogL16GuessDataFmt(TIFFDirectory *td)
|
|
{
|
|
#define PACK(s,b,f) (((b)<<6)|((s)<<3)|(f))
|
|
switch (PACK(td->td_samplesperpixel, td->td_bitspersample, td->td_sampleformat)) {
|
|
case PACK(1, 32, SAMPLEFORMAT_IEEEFP):
|
|
return (SGILOGDATAFMT_FLOAT);
|
|
case PACK(1, 16, SAMPLEFORMAT_VOID):
|
|
case PACK(1, 16, SAMPLEFORMAT_INT):
|
|
case PACK(1, 16, SAMPLEFORMAT_UINT):
|
|
return (SGILOGDATAFMT_16BIT);
|
|
case PACK(1, 8, SAMPLEFORMAT_VOID):
|
|
case PACK(1, 8, SAMPLEFORMAT_UINT):
|
|
return (SGILOGDATAFMT_8BIT);
|
|
}
|
|
#undef PACK
|
|
return (SGILOGDATAFMT_UNKNOWN);
|
|
}
|
|
|
|
static int
|
|
LogL16InitState(TIFF* tif)
|
|
{
|
|
TIFFDirectory *td = &tif->tif_dir;
|
|
LogLuvState* sp = DecoderState(tif);
|
|
static const char module[] = "LogL16InitState";
|
|
|
|
assert(sp != NULL);
|
|
assert(td->td_photometric == PHOTOMETRIC_LOGL);
|
|
|
|
/* for some reason, we can't do this in TIFFInitLogL16 */
|
|
if (sp->user_datafmt == SGILOGDATAFMT_UNKNOWN)
|
|
sp->user_datafmt = LogL16GuessDataFmt(td);
|
|
switch (sp->user_datafmt) {
|
|
case SGILOGDATAFMT_FLOAT:
|
|
sp->pixel_size = sizeof (float);
|
|
break;
|
|
case SGILOGDATAFMT_16BIT:
|
|
sp->pixel_size = sizeof (int16);
|
|
break;
|
|
case SGILOGDATAFMT_8BIT:
|
|
sp->pixel_size = sizeof (uint8);
|
|
break;
|
|
default:
|
|
TIFFError(tif->tif_name,
|
|
"No support for converting user data format to LogL");
|
|
return (0);
|
|
}
|
|
sp->tbuflen = td->td_imagewidth * td->td_rowsperstrip;
|
|
sp->tbuf = (tidata_t*) _TIFFmalloc(sp->tbuflen * sizeof (int16));
|
|
if (sp->tbuf == NULL) {
|
|
TIFFError(module, "%s: No space for SGILog translation buffer",
|
|
tif->tif_name);
|
|
return (0);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
LogLuvGuessDataFmt(TIFFDirectory *td)
|
|
{
|
|
int guess;
|
|
|
|
/*
|
|
* If the user didn't tell us their datafmt,
|
|
* take our best guess from the bitspersample.
|
|
*/
|
|
#define PACK(a,b) (((a)<<3)|(b))
|
|
switch (PACK(td->td_bitspersample, td->td_sampleformat)) {
|
|
case PACK(32, SAMPLEFORMAT_IEEEFP):
|
|
guess = SGILOGDATAFMT_FLOAT;
|
|
break;
|
|
case PACK(32, SAMPLEFORMAT_VOID):
|
|
case PACK(32, SAMPLEFORMAT_UINT):
|
|
case PACK(32, SAMPLEFORMAT_INT):
|
|
guess = SGILOGDATAFMT_RAW;
|
|
break;
|
|
case PACK(16, SAMPLEFORMAT_VOID):
|
|
case PACK(16, SAMPLEFORMAT_INT):
|
|
case PACK(16, SAMPLEFORMAT_UINT):
|
|
guess = SGILOGDATAFMT_16BIT;
|
|
break;
|
|
case PACK( 8, SAMPLEFORMAT_VOID):
|
|
case PACK( 8, SAMPLEFORMAT_UINT):
|
|
guess = SGILOGDATAFMT_8BIT;
|
|
break;
|
|
default:
|
|
guess = SGILOGDATAFMT_UNKNOWN;
|
|
break;
|
|
#undef PACK
|
|
}
|
|
/*
|
|
* Double-check samples per pixel.
|
|
*/
|
|
switch (td->td_samplesperpixel) {
|
|
case 1:
|
|
if (guess != SGILOGDATAFMT_RAW)
|
|
guess = SGILOGDATAFMT_UNKNOWN;
|
|
break;
|
|
case 3:
|
|
if (guess == SGILOGDATAFMT_RAW)
|
|
guess = SGILOGDATAFMT_UNKNOWN;
|
|
break;
|
|
default:
|
|
guess = SGILOGDATAFMT_UNKNOWN;
|
|
break;
|
|
}
|
|
return (guess);
|
|
}
|
|
|
|
static int
|
|
LogLuvInitState(TIFF* tif)
|
|
{
|
|
TIFFDirectory* td = &tif->tif_dir;
|
|
LogLuvState* sp = DecoderState(tif);
|
|
static const char module[] = "LogLuvInitState";
|
|
|
|
assert(sp != NULL);
|
|
assert(td->td_photometric == PHOTOMETRIC_LOGLUV);
|
|
|
|
/* for some reason, we can't do this in TIFFInitLogLuv */
|
|
if (td->td_planarconfig != PLANARCONFIG_CONTIG) {
|
|
TIFFError(module,
|
|
"SGILog compression cannot handle non-contiguous data");
|
|
return (0);
|
|
}
|
|
if (sp->user_datafmt == SGILOGDATAFMT_UNKNOWN)
|
|
sp->user_datafmt = LogLuvGuessDataFmt(td);
|
|
switch (sp->user_datafmt) {
|
|
case SGILOGDATAFMT_FLOAT:
|
|
sp->pixel_size = 3*sizeof (float);
|
|
break;
|
|
case SGILOGDATAFMT_16BIT:
|
|
sp->pixel_size = 3*sizeof (int16);
|
|
break;
|
|
case SGILOGDATAFMT_RAW:
|
|
sp->pixel_size = sizeof (uint32);
|
|
break;
|
|
case SGILOGDATAFMT_8BIT:
|
|
sp->pixel_size = 3*sizeof (uint8);
|
|
break;
|
|
default:
|
|
TIFFError(tif->tif_name,
|
|
"No support for converting user data format to LogLuv");
|
|
return (0);
|
|
}
|
|
sp->tbuflen = td->td_imagewidth * td->td_rowsperstrip;
|
|
sp->tbuf = (tidata_t*) _TIFFmalloc(sp->tbuflen * sizeof (uint32));
|
|
if (sp->tbuf == NULL) {
|
|
TIFFError(module, "%s: No space for SGILog translation buffer",
|
|
tif->tif_name);
|
|
return (0);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
LogLuvSetupDecode(TIFF* tif)
|
|
{
|
|
LogLuvState* sp = DecoderState(tif);
|
|
TIFFDirectory* td = &tif->tif_dir;
|
|
|
|
tif->tif_postdecode = _TIFFNoPostDecode;
|
|
switch (td->td_photometric) {
|
|
case PHOTOMETRIC_LOGLUV:
|
|
if (!LogLuvInitState(tif))
|
|
break;
|
|
if (td->td_compression == COMPRESSION_SGILOG24) {
|
|
tif->tif_decoderow = LogLuvDecode24;
|
|
switch (sp->user_datafmt) {
|
|
case SGILOGDATAFMT_FLOAT:
|
|
sp->tfunc = Luv24toXYZ;
|
|
break;
|
|
case SGILOGDATAFMT_16BIT:
|
|
sp->tfunc = Luv24toLuv48;
|
|
break;
|
|
case SGILOGDATAFMT_8BIT:
|
|
sp->tfunc = Luv24toRGB;
|
|
break;
|
|
}
|
|
} else {
|
|
tif->tif_decoderow = LogLuvDecode32;
|
|
switch (sp->user_datafmt) {
|
|
case SGILOGDATAFMT_FLOAT:
|
|
sp->tfunc = Luv32toXYZ;
|
|
break;
|
|
case SGILOGDATAFMT_16BIT:
|
|
sp->tfunc = Luv32toLuv48;
|
|
break;
|
|
case SGILOGDATAFMT_8BIT:
|
|
sp->tfunc = Luv32toRGB;
|
|
break;
|
|
}
|
|
}
|
|
return (1);
|
|
case PHOTOMETRIC_LOGL:
|
|
if (!LogL16InitState(tif))
|
|
break;
|
|
tif->tif_decoderow = LogL16Decode;
|
|
switch (sp->user_datafmt) {
|
|
case SGILOGDATAFMT_FLOAT:
|
|
sp->tfunc = L16toY;
|
|
break;
|
|
case SGILOGDATAFMT_8BIT:
|
|
sp->tfunc = L16toGry;
|
|
break;
|
|
}
|
|
return (1);
|
|
default:
|
|
TIFFError(tif->tif_name,
|
|
"Inappropriate photometric interpretation %d for SGILog compression; %s",
|
|
td->td_photometric, "must be either LogLUV or LogL");
|
|
break;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
LogLuvSetupEncode(TIFF* tif)
|
|
{
|
|
LogLuvState* sp = EncoderState(tif);
|
|
TIFFDirectory* td = &tif->tif_dir;
|
|
|
|
switch (td->td_photometric) {
|
|
case PHOTOMETRIC_LOGLUV:
|
|
if (!LogLuvInitState(tif))
|
|
break;
|
|
if (td->td_compression == COMPRESSION_SGILOG24) {
|
|
tif->tif_encoderow = LogLuvEncode24;
|
|
switch (sp->user_datafmt) {
|
|
case SGILOGDATAFMT_FLOAT:
|
|
sp->tfunc = Luv24fromXYZ;
|
|
break;
|
|
case SGILOGDATAFMT_16BIT:
|
|
sp->tfunc = Luv24fromLuv48;
|
|
break;
|
|
case SGILOGDATAFMT_RAW:
|
|
break;
|
|
default:
|
|
goto notsupported;
|
|
}
|
|
} else {
|
|
tif->tif_encoderow = LogLuvEncode32;
|
|
switch (sp->user_datafmt) {
|
|
case SGILOGDATAFMT_FLOAT:
|
|
sp->tfunc = Luv32fromXYZ;
|
|
break;
|
|
case SGILOGDATAFMT_16BIT:
|
|
sp->tfunc = Luv32fromLuv48;
|
|
break;
|
|
case SGILOGDATAFMT_RAW:
|
|
break;
|
|
default:
|
|
goto notsupported;
|
|
}
|
|
}
|
|
break;
|
|
case PHOTOMETRIC_LOGL:
|
|
if (!LogL16InitState(tif))
|
|
break;
|
|
tif->tif_encoderow = LogL16Encode;
|
|
switch (sp->user_datafmt) {
|
|
case SGILOGDATAFMT_FLOAT:
|
|
sp->tfunc = L16fromY;
|
|
break;
|
|
case SGILOGDATAFMT_16BIT:
|
|
break;
|
|
default:
|
|
goto notsupported;
|
|
}
|
|
break;
|
|
default:
|
|
TIFFError(tif->tif_name,
|
|
"Inappropriate photometric interpretation %d for SGILog compression; %s",
|
|
td->td_photometric, "must be either LogLUV or LogL");
|
|
break;
|
|
}
|
|
return (1);
|
|
notsupported:
|
|
TIFFError(tif->tif_name,
|
|
"SGILog compression supported only for %s, or raw data",
|
|
td->td_photometric == PHOTOMETRIC_LOGL ? "Y, L" : "XYZ, Luv");
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
LogLuvClose(TIFF* tif)
|
|
{
|
|
TIFFDirectory *td = &tif->tif_dir;
|
|
|
|
/*
|
|
* For consistency, we always want to write out the same
|
|
* bitspersample and sampleformat for our TIFF file,
|
|
* regardless of the data format being used by the application.
|
|
* Since this routine is called after tags have been set but
|
|
* before they have been recorded in the file, we reset them here.
|
|
*/
|
|
td->td_samplesperpixel =
|
|
(td->td_photometric == PHOTOMETRIC_LOGL) ? 1 : 3;
|
|
td->td_bitspersample = 16;
|
|
td->td_sampleformat = SAMPLEFORMAT_INT;
|
|
}
|
|
|
|
static void
|
|
LogLuvCleanup(TIFF* tif)
|
|
{
|
|
LogLuvState* sp = (LogLuvState *)tif->tif_data;
|
|
|
|
if (sp) {
|
|
if (sp->tbuf)
|
|
_TIFFfree(sp->tbuf);
|
|
_TIFFfree(sp);
|
|
tif->tif_data = NULL;
|
|
}
|
|
}
|
|
|
|
static int
|
|
LogLuvVSetField(TIFF* tif, ttag_t tag, va_list ap)
|
|
{
|
|
LogLuvState* sp = DecoderState(tif);
|
|
int bps, fmt;
|
|
|
|
switch (tag) {
|
|
case TIFFTAG_SGILOGDATAFMT:
|
|
sp->user_datafmt = va_arg(ap, int);
|
|
/*
|
|
* Tweak the TIFF header so that the rest of libtiff knows what
|
|
* size of data will be passed between app and library, and
|
|
* assume that the app knows what it is doing and is not
|
|
* confused by these header manipulations...
|
|
*/
|
|
switch (sp->user_datafmt) {
|
|
case SGILOGDATAFMT_FLOAT:
|
|
bps = 32, fmt = SAMPLEFORMAT_IEEEFP;
|
|
break;
|
|
case SGILOGDATAFMT_16BIT:
|
|
bps = 16, fmt = SAMPLEFORMAT_INT;
|
|
break;
|
|
case SGILOGDATAFMT_RAW:
|
|
bps = 32, fmt = SAMPLEFORMAT_UINT;
|
|
TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, 1);
|
|
break;
|
|
case SGILOGDATAFMT_8BIT:
|
|
bps = 8, fmt = SAMPLEFORMAT_UINT;
|
|
break;
|
|
default:
|
|
TIFFError(tif->tif_name,
|
|
"Unknown data format %d for LogLuv compression",
|
|
sp->user_datafmt);
|
|
return (0);
|
|
}
|
|
TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, bps);
|
|
TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, fmt);
|
|
/*
|
|
* Must recalculate sizes should bits/sample change.
|
|
*/
|
|
tif->tif_tilesize = TIFFTileSize(tif);
|
|
tif->tif_scanlinesize = TIFFScanlineSize(tif);
|
|
return (1);
|
|
case TIFFTAG_SGILOGENCODE:
|
|
sp->encode_meth = va_arg(ap, int);
|
|
if (sp->encode_meth != SGILOGENCODE_NODITHER &&
|
|
sp->encode_meth != SGILOGENCODE_RANDITHER) {
|
|
TIFFError(tif->tif_name,
|
|
"Unknown encoding %d for LogLuv compression",
|
|
sp->encode_meth);
|
|
return (0);
|
|
}
|
|
return (1);
|
|
default:
|
|
return (*sp->vsetparent)(tif, tag, ap);
|
|
}
|
|
}
|
|
|
|
static int
|
|
LogLuvVGetField(TIFF* tif, ttag_t tag, va_list ap)
|
|
{
|
|
LogLuvState *sp = (LogLuvState *)tif->tif_data;
|
|
|
|
switch (tag) {
|
|
case TIFFTAG_SGILOGDATAFMT:
|
|
*va_arg(ap, int*) = sp->user_datafmt;
|
|
return (1);
|
|
default:
|
|
return (*sp->vgetparent)(tif, tag, ap);
|
|
}
|
|
}
|
|
|
|
static const TIFFFieldInfo LogLuvFieldInfo[] = {
|
|
{ TIFFTAG_SGILOGDATAFMT, 0, 0, TIFF_SHORT, FIELD_PSEUDO,
|
|
TRUE, FALSE, "SGILogDataFmt"},
|
|
{ TIFFTAG_SGILOGENCODE, 0, 0, TIFF_SHORT, FIELD_PSEUDO,
|
|
TRUE, FALSE, "SGILogEncode"}
|
|
};
|
|
|
|
int
|
|
TIFFInitSGILog(TIFF* tif, int scheme)
|
|
{
|
|
static const char module[] = "TIFFInitSGILog";
|
|
LogLuvState* sp;
|
|
|
|
assert(scheme == COMPRESSION_SGILOG24 || scheme == COMPRESSION_SGILOG);
|
|
|
|
/*
|
|
* Allocate state block so tag methods have storage to record values.
|
|
*/
|
|
tif->tif_data = (tidata_t) _TIFFmalloc(sizeof (LogLuvState));
|
|
if (tif->tif_data == NULL)
|
|
goto bad;
|
|
sp = (LogLuvState*) tif->tif_data;
|
|
_TIFFmemset((tdata_t)sp, 0, sizeof (*sp));
|
|
sp->user_datafmt = SGILOGDATAFMT_UNKNOWN;
|
|
sp->encode_meth = (scheme == COMPRESSION_SGILOG24) ?
|
|
SGILOGENCODE_RANDITHER : SGILOGENCODE_NODITHER;
|
|
sp->tfunc = _logLuvNop;
|
|
|
|
/*
|
|
* Install codec methods.
|
|
* NB: tif_decoderow & tif_encoderow are filled
|
|
* in at setup time.
|
|
*/
|
|
tif->tif_setupdecode = LogLuvSetupDecode;
|
|
tif->tif_decodestrip = LogLuvDecodeStrip;
|
|
tif->tif_decodetile = LogLuvDecodeTile;
|
|
tif->tif_setupencode = LogLuvSetupEncode;
|
|
tif->tif_encodestrip = LogLuvEncodeStrip;
|
|
tif->tif_encodetile = LogLuvEncodeTile;
|
|
tif->tif_close = LogLuvClose;
|
|
tif->tif_cleanup = LogLuvCleanup;
|
|
|
|
/* override SetField so we can handle our private pseudo-tag */
|
|
_TIFFMergeFieldInfo(tif, LogLuvFieldInfo, N(LogLuvFieldInfo));
|
|
sp->vgetparent = tif->tif_vgetfield;
|
|
tif->tif_vgetfield = LogLuvVGetField; /* hook for codec tags */
|
|
sp->vsetparent = tif->tif_vsetfield;
|
|
tif->tif_vsetfield = LogLuvVSetField; /* hook for codec tags */
|
|
|
|
return (1);
|
|
bad:
|
|
TIFFError(module, "%s: No space for LogLuv state block", tif->tif_name);
|
|
return (0);
|
|
}
|
|
#endif /* LOGLUV_SUPPORT */
|