308 lines
9.3 KiB
C
308 lines
9.3 KiB
C
/*
|
|
* Copyright (c) 1988-1997 Sam Leffler
|
|
* Copyright (c) 1991-1997 Silicon Graphics, Inc.
|
|
*
|
|
* Permission to use, copy, modify, distribute, and sell this software and
|
|
* its documentation for any purpose is hereby granted without fee, provided
|
|
* that (i) the above copyright notices and this permission notice appear in
|
|
* all copies of the software and related documentation, and (ii) the names of
|
|
* Sam Leffler and Silicon Graphics may not be used in any advertising or
|
|
* publicity relating to the software without the specific, prior written
|
|
* permission of Sam Leffler and Silicon Graphics.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
|
|
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
|
|
*
|
|
* IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
|
|
* ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
|
|
* OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
|
* WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
|
|
* LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
|
* OF THIS SOFTWARE.
|
|
*/
|
|
|
|
/*
|
|
* CIE L*a*b* to CIE XYZ and CIE XYZ to RGB conversion routines are taken
|
|
* from the VIPS library (http://www.vips.ecs.soton.ac.uk) with
|
|
* the permission of John Cupitt, the VIPS author.
|
|
*/
|
|
|
|
/*
|
|
* TIFF Library.
|
|
*
|
|
* Color space conversion routines.
|
|
*/
|
|
|
|
#include "tiffiop.h"
|
|
#include <math.h>
|
|
|
|
/*
|
|
* Convert color value from the CIE L*a*b* 1976 space to CIE XYZ.
|
|
*/
|
|
void
|
|
TIFFCIELabToXYZ(TIFFCIELabToRGB *cielab, uint32 l, int32 a, int32 b,
|
|
float *X, float *Y, float *Z)
|
|
{
|
|
float L = (float)l * 100.0F / 255.0F;
|
|
float cby, tmp;
|
|
|
|
if( L < 8.856F ) {
|
|
*Y = (L * cielab->Y0) / 903.292F;
|
|
cby = 7.787F * (*Y / cielab->Y0) + 16.0F / 116.0F;
|
|
} else {
|
|
cby = (L + 16.0F) / 116.0F;
|
|
*Y = cielab->Y0 * cby * cby * cby;
|
|
}
|
|
|
|
tmp = (float)a / 500.0F + cby;
|
|
if( tmp < 0.2069F )
|
|
*X = cielab->X0 * (tmp - 0.13793F) / 7.787F;
|
|
else
|
|
*X = cielab->X0 * tmp * tmp * tmp;
|
|
|
|
tmp = cby - (float)b / 200.0F;
|
|
if( tmp < 0.2069F )
|
|
*Z = cielab->Z0 * (tmp - 0.13793F) / 7.787F;
|
|
else
|
|
*Z = cielab->Z0 * tmp * tmp * tmp;
|
|
}
|
|
|
|
#define RINT(R) ((uint32)((R)>0?((R)+0.5):((R)-0.5)))
|
|
/*
|
|
* Convert color value from the XYZ space to RGB.
|
|
*/
|
|
void
|
|
TIFFXYZToRGB(TIFFCIELabToRGB *cielab, float X, float Y, float Z,
|
|
uint32 *r, uint32 *g, uint32 *b)
|
|
{
|
|
int i;
|
|
float Yr, Yg, Yb;
|
|
float *matrix = &cielab->display.d_mat[0][0];
|
|
|
|
/* Multiply through the matrix to get luminosity values. */
|
|
Yr = matrix[0] * X + matrix[1] * Y + matrix[2] * Z;
|
|
Yg = matrix[3] * X + matrix[4] * Y + matrix[5] * Z;
|
|
Yb = matrix[6] * X + matrix[7] * Y + matrix[8] * Z;
|
|
|
|
/* Clip input */
|
|
Yr = TIFFmax(Yr, cielab->display.d_Y0R);
|
|
Yg = TIFFmax(Yg, cielab->display.d_Y0G);
|
|
Yb = TIFFmax(Yb, cielab->display.d_Y0B);
|
|
|
|
/* Avoid overflow in case of wrong input values */
|
|
Yr = TIFFmin(Yr, cielab->display.d_YCR);
|
|
Yg = TIFFmin(Yg, cielab->display.d_YCG);
|
|
Yb = TIFFmin(Yb, cielab->display.d_YCB);
|
|
|
|
/* Turn luminosity to colour value. */
|
|
i = (int)((Yr - cielab->display.d_Y0R) / cielab->rstep);
|
|
i = TIFFmin(cielab->range, i);
|
|
*r = RINT(cielab->Yr2r[i]);
|
|
|
|
i = (int)((Yg - cielab->display.d_Y0G) / cielab->gstep);
|
|
i = TIFFmin(cielab->range, i);
|
|
*g = RINT(cielab->Yg2g[i]);
|
|
|
|
i = (int)((Yb - cielab->display.d_Y0B) / cielab->bstep);
|
|
i = TIFFmin(cielab->range, i);
|
|
*b = RINT(cielab->Yb2b[i]);
|
|
|
|
/* Clip output. */
|
|
*r = TIFFmin(*r, cielab->display.d_Vrwr);
|
|
*g = TIFFmin(*g, cielab->display.d_Vrwg);
|
|
*b = TIFFmin(*b, cielab->display.d_Vrwb);
|
|
}
|
|
#undef RINT
|
|
|
|
/*
|
|
* Allocate conversion state structures and make look_up tables for
|
|
* the Yr,Yb,Yg <=> r,g,b conversions.
|
|
*/
|
|
int
|
|
TIFFCIELabToRGBInit(TIFFCIELabToRGB* cielab,
|
|
const TIFFDisplay *display, float *refWhite)
|
|
{
|
|
int i;
|
|
double dfGamma;
|
|
|
|
cielab->range = CIELABTORGB_TABLE_RANGE;
|
|
|
|
_TIFFmemcpy(&cielab->display, display, sizeof(TIFFDisplay));
|
|
|
|
/* Red */
|
|
dfGamma = 1.0 / cielab->display.d_gammaR ;
|
|
cielab->rstep =
|
|
(cielab->display.d_YCR - cielab->display.d_Y0R) / cielab->range;
|
|
for(i = 0; i <= cielab->range; i++) {
|
|
cielab->Yr2r[i] = cielab->display.d_Vrwr
|
|
* ((float)pow((double)i / cielab->range, dfGamma));
|
|
}
|
|
|
|
/* Green */
|
|
dfGamma = 1.0 / cielab->display.d_gammaG ;
|
|
cielab->gstep =
|
|
(cielab->display.d_YCR - cielab->display.d_Y0R) / cielab->range;
|
|
for(i = 0; i <= cielab->range; i++) {
|
|
cielab->Yg2g[i] = cielab->display.d_Vrwg
|
|
* ((float)pow((double)i / cielab->range, dfGamma));
|
|
}
|
|
|
|
/* Blue */
|
|
dfGamma = 1.0 / cielab->display.d_gammaB ;
|
|
cielab->bstep =
|
|
(cielab->display.d_YCR - cielab->display.d_Y0R) / cielab->range;
|
|
for(i = 0; i <= cielab->range; i++) {
|
|
cielab->Yb2b[i] = cielab->display.d_Vrwb
|
|
* ((float)pow((double)i / cielab->range, dfGamma));
|
|
}
|
|
|
|
/* Init reference white point */
|
|
cielab->X0 = refWhite[0];
|
|
cielab->Y0 = refWhite[1];
|
|
cielab->Z0 = refWhite[2];
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Convert color value from the YCbCr space to RGB.
|
|
* The colorspace conversion algorithm comes from the IJG v5a code;
|
|
* see below for more information on how it works.
|
|
*/
|
|
#define SHIFT 16
|
|
#define FIX(x) ((int32)((x) * (1L<<SHIFT) + 0.5))
|
|
#define ONE_HALF ((int32)(1<<(SHIFT-1)))
|
|
#define Code2V(c, RB, RW, CR) ((((c)-(int32)(RB))*(float)(CR))/(float)(((RW)-(RB)!=0) ? ((RW)-(RB)) : 1))
|
|
#define CLAMP(f,min,max) ((f)<(min)?(min):(f)>(max)?(max):(f))
|
|
#define HICLAMP(f,max) ((f)>(max)?(max):(f))
|
|
|
|
void
|
|
TIFFYCbCrtoRGB(TIFFYCbCrToRGB *ycbcr, uint32 Y, int32 Cb, int32 Cr,
|
|
uint32 *r, uint32 *g, uint32 *b)
|
|
{
|
|
int32 i;
|
|
|
|
/* XXX: Only 8-bit YCbCr input supported for now */
|
|
Y = HICLAMP(Y, 255);
|
|
Cb = CLAMP(Cb, 0, 255);
|
|
Cr = CLAMP(Cr, 0, 255);
|
|
|
|
i = ycbcr->Y_tab[Y] + ycbcr->Cr_r_tab[Cr];
|
|
*r = CLAMP(i, 0, 255);
|
|
i = ycbcr->Y_tab[Y]
|
|
+ (int)((ycbcr->Cb_g_tab[Cb] + ycbcr->Cr_g_tab[Cr]) >> SHIFT);
|
|
*g = CLAMP(i, 0, 255);
|
|
i = ycbcr->Y_tab[Y] + ycbcr->Cb_b_tab[Cb];
|
|
*b = CLAMP(i, 0, 255);
|
|
}
|
|
|
|
/* Clamp function for sanitization purposes. Normally clamping should not */
|
|
/* occur for well behaved chroma and refBlackWhite coefficients */
|
|
static float CLAMPw(float v, float vmin, float vmax)
|
|
{
|
|
if( v < vmin )
|
|
{
|
|
/* printf("%f clamped to %f\n", v, vmin); */
|
|
return vmin;
|
|
}
|
|
if( v > vmax )
|
|
{
|
|
/* printf("%f clamped to %f\n", v, vmax); */
|
|
return vmax;
|
|
}
|
|
return v;
|
|
}
|
|
|
|
/*
|
|
* Initialize the YCbCr->RGB conversion tables. The conversion
|
|
* is done according to the 6.0 spec:
|
|
*
|
|
* R = Y + Cr*(2 - 2*LumaRed)
|
|
* B = Y + Cb*(2 - 2*LumaBlue)
|
|
* G = Y
|
|
* - LumaBlue*Cb*(2-2*LumaBlue)/LumaGreen
|
|
* - LumaRed*Cr*(2-2*LumaRed)/LumaGreen
|
|
*
|
|
* To avoid floating point arithmetic the fractional constants that
|
|
* come out of the equations are represented as fixed point values
|
|
* in the range 0...2^16. We also eliminate multiplications by
|
|
* pre-calculating possible values indexed by Cb and Cr (this code
|
|
* assumes conversion is being done for 8-bit samples).
|
|
*/
|
|
int
|
|
TIFFYCbCrToRGBInit(TIFFYCbCrToRGB* ycbcr, float *luma, float *refBlackWhite)
|
|
{
|
|
TIFFRGBValue* clamptab;
|
|
int i;
|
|
|
|
#define LumaRed luma[0]
|
|
#define LumaGreen luma[1]
|
|
#define LumaBlue luma[2]
|
|
|
|
clamptab = (TIFFRGBValue*)(
|
|
(uint8*) ycbcr+TIFFroundup_32(sizeof (TIFFYCbCrToRGB), sizeof (long)));
|
|
_TIFFmemset(clamptab, 0, 256); /* v < 0 => 0 */
|
|
ycbcr->clamptab = (clamptab += 256);
|
|
for (i = 0; i < 256; i++)
|
|
clamptab[i] = (TIFFRGBValue) i;
|
|
_TIFFmemset(clamptab+256, 255, 2*256); /* v > 255 => 255 */
|
|
ycbcr->Cr_r_tab = (int*) (clamptab + 3*256);
|
|
ycbcr->Cb_b_tab = ycbcr->Cr_r_tab + 256;
|
|
ycbcr->Cr_g_tab = (int32*) (ycbcr->Cb_b_tab + 256);
|
|
ycbcr->Cb_g_tab = ycbcr->Cr_g_tab + 256;
|
|
ycbcr->Y_tab = ycbcr->Cb_g_tab + 256;
|
|
|
|
{ float f1 = 2-2*LumaRed; int32 D1 = FIX(CLAMP(f1,0.0F,2.0F));
|
|
float f2 = LumaRed*f1/LumaGreen; int32 D2 = -FIX(CLAMP(f2,0.0F,2.0F));
|
|
float f3 = 2-2*LumaBlue; int32 D3 = FIX(CLAMP(f3,0.0F,2.0F));
|
|
float f4 = LumaBlue*f3/LumaGreen; int32 D4 = -FIX(CLAMP(f4,0.0F,2.0F));
|
|
int x;
|
|
|
|
#undef LumaBlue
|
|
#undef LumaGreen
|
|
#undef LumaRed
|
|
|
|
/*
|
|
* i is the actual input pixel value in the range 0..255
|
|
* Cb and Cr values are in the range -128..127 (actually
|
|
* they are in a range defined by the ReferenceBlackWhite
|
|
* tag) so there is some range shifting to do here when
|
|
* constructing tables indexed by the raw pixel data.
|
|
*/
|
|
for (i = 0, x = -128; i < 256; i++, x++) {
|
|
int32 Cr = (int32)CLAMPw(Code2V(x, refBlackWhite[4] - 128.0F,
|
|
refBlackWhite[5] - 128.0F, 127),
|
|
-128.0F * 32, 128.0F * 32);
|
|
int32 Cb = (int32)CLAMPw(Code2V(x, refBlackWhite[2] - 128.0F,
|
|
refBlackWhite[3] - 128.0F, 127),
|
|
-128.0F * 32, 128.0F * 32);
|
|
|
|
ycbcr->Cr_r_tab[i] = (int32)((D1*Cr + ONE_HALF)>>SHIFT);
|
|
ycbcr->Cb_b_tab[i] = (int32)((D3*Cb + ONE_HALF)>>SHIFT);
|
|
ycbcr->Cr_g_tab[i] = D2*Cr;
|
|
ycbcr->Cb_g_tab[i] = D4*Cb + ONE_HALF;
|
|
ycbcr->Y_tab[i] =
|
|
(int32)CLAMPw(Code2V(x + 128, refBlackWhite[0], refBlackWhite[1], 255),
|
|
-128.0F * 32, 128.0F * 32);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#undef HICLAMP
|
|
#undef CLAMP
|
|
#undef Code2V
|
|
#undef SHIFT
|
|
#undef ONE_HALF
|
|
#undef FIX
|
|
|
|
/* vim: set ts=8 sts=8 sw=8 noet: */
|
|
/*
|
|
* Local Variables:
|
|
* mode: c
|
|
* c-basic-offset: 8
|
|
* fill-column: 78
|
|
* End:
|
|
*/
|