LZW compression code is merged back from the separate package.

This commit is contained in:
Andrey Kiselev 2004-07-24 19:01:15 +00:00
parent 8670bb33fb
commit d15dbca39d

View File

@ -1,4 +1,4 @@
/* $Header: /cvs/maptools/cvsroot/libtiff/libtiff/tif_lzw.c,v 1.20 2003-11-03 14:45:38 dron Exp $ */ /* $Id: tif_lzw.c,v 1.21 2004-07-24 19:01:15 dron Exp $ */
/* /*
* Copyright (c) 1988-1997 Sam Leffler * Copyright (c) 1988-1997 Sam Leffler
@ -97,6 +97,8 @@ typedef struct {
u_short free_ent; /* next free entry in hash table */ u_short free_ent; /* next free entry in hash table */
long nextdata; /* next bits of i/o */ long nextdata; /* next bits of i/o */
long nextbits; /* # of valid bits in lzw_nextdata */ long nextbits; /* # of valid bits in lzw_nextdata */
int rw_mode; /* preserve rw_mode from init */
} LZWBaseState; } LZWBaseState;
#define lzw_nbits base.nbits #define lzw_nbits base.nbits
@ -109,6 +111,10 @@ typedef struct {
* Encoding-specific state. * Encoding-specific state.
*/ */
typedef uint16 hcode_t; /* codes fit in 16 bits */ typedef uint16 hcode_t; /* codes fit in 16 bits */
typedef struct {
long hash;
hcode_t code;
} hash_t;
/* /*
* Decoding-specific state. * Decoding-specific state.
@ -125,7 +131,7 @@ typedef int (*decodeFunc)(TIFF*, tidata_t, tsize_t, tsample_t);
typedef struct { typedef struct {
LZWBaseState base; LZWBaseState base;
/* Decoding specific data */ /* Decoding specific data */
long dec_nbitsmask; /* lzw_nbits 1 bits, right adjusted */ long dec_nbitsmask; /* lzw_nbits 1 bits, right adjusted */
long dec_restart; /* restart count */ long dec_restart; /* restart count */
#ifdef LZW_CHECKEOS #ifdef LZW_CHECKEOS
@ -137,15 +143,27 @@ typedef struct {
code_t* dec_free_entp; /* next free entry */ code_t* dec_free_entp; /* next free entry */
code_t* dec_maxcodep; /* max available entry */ code_t* dec_maxcodep; /* max available entry */
code_t* dec_codetab; /* kept separate for small machines */ code_t* dec_codetab; /* kept separate for small machines */
/* Encoding specific data */
int enc_oldcode; /* last code encountered */
long enc_checkpoint; /* point at which to clear table */
#define CHECK_GAP 10000 /* enc_ratio check interval */
long enc_ratio; /* current compression ratio */
long enc_incount; /* (input) data bytes encoded */
long enc_outcount; /* encoded (output) bytes */
tidata_t enc_rawlimit; /* bound on tif_rawdata buffer */
hash_t* enc_hashtab; /* kept separate for small machines */
} LZWCodecState; } LZWCodecState;
#define LZWState(tif) ((LZWBaseState*) (tif)->tif_data) #define LZWState(tif) ((LZWBaseState*) (tif)->tif_data)
#define DecoderState(tif) ((LZWCodecState*) LZWState(tif)) #define DecoderState(tif) ((LZWCodecState*) LZWState(tif))
#define EncoderState(tif) ((LZWCodecState*) LZWState(tif))
static int LZWDecode(TIFF*, tidata_t, tsize_t, tsample_t); static int LZWDecode(TIFF*, tidata_t, tsize_t, tsample_t);
#ifdef LZW_COMPAT #ifdef LZW_COMPAT
static int LZWDecodeCompat(TIFF*, tidata_t, tsize_t, tsample_t); static int LZWDecodeCompat(TIFF*, tidata_t, tsize_t, tsample_t);
#endif #endif
static void cl_hash(LZWCodecState*);
/* /*
* LZW Decoder. * LZW Decoder.
@ -175,9 +193,33 @@ static int
LZWSetupDecode(TIFF* tif) LZWSetupDecode(TIFF* tif)
{ {
LZWCodecState* sp = DecoderState(tif); LZWCodecState* sp = DecoderState(tif);
static const char module[] = "LZWSetupDecode"; static const char module[] = " LZWSetupDecode";
int code; int code;
if( sp == NULL )
{
/*
* Allocate state block so tag methods have storage to record
* values.
*/
tif->tif_data = (tidata_t) _TIFFmalloc(sizeof(LZWCodecState));
if (tif->tif_data == NULL)
{
TIFFError("LZWPreDecode", "No space for LZW state block");
return (0);
}
DecoderState(tif)->dec_codetab = NULL;
DecoderState(tif)->dec_decode = NULL;
/*
* Setup predictor setup.
*/
(void) TIFFPredictorInit(tif);
sp = DecoderState(tif);
}
assert(sp != NULL); assert(sp != NULL);
if (sp->dec_codetab == NULL) { if (sp->dec_codetab == NULL) {
@ -191,8 +233,8 @@ LZWSetupDecode(TIFF* tif)
*/ */
code = 255; code = 255;
do { do {
sp->dec_codetab[code].value = (u_char) code; sp->dec_codetab[code].value = code;
sp->dec_codetab[code].firstchar = (u_char) code; sp->dec_codetab[code].firstchar = code;
sp->dec_codetab[code].length = 1; sp->dec_codetab[code].length = 1;
sp->dec_codetab[code].next = NULL; sp->dec_codetab[code].next = NULL;
} while (code--); } while (code--);
@ -347,7 +389,7 @@ LZWDecode(TIFF* tif, tidata_t op0, tsize_t occ0, tsample_t s)
--tp; --tp;
t = codep->value; t = codep->value;
codep = codep->next; codep = codep->next;
*tp = (char) t; *tp = t;
} while (--residue && codep); } while (--residue && codep);
sp->dec_restart = 0; sp->dec_restart = 0;
} }
@ -373,7 +415,7 @@ LZWDecode(TIFF* tif, tidata_t op0, tsize_t occ0, tsample_t s)
NextCode(tif, sp, bp, code, GetNextCode); NextCode(tif, sp, bp, code, GetNextCode);
if (code == CODE_EOI) if (code == CODE_EOI)
break; break;
*op++ = (char)code, occ--; *op++ = code, occ--;
oldcodep = sp->dec_codetab + code; oldcodep = sp->dec_codetab + code;
continue; continue;
} }
@ -451,7 +493,7 @@ LZWDecode(TIFF* tif, tidata_t op0, tsize_t occ0, tsample_t s)
--tp; --tp;
t = codep->value; t = codep->value;
codep = codep->next; codep = codep->next;
*tp = (char) t; *tp = t;
} while (codep && tp > op); } while (codep && tp > op);
if (codep) { if (codep) {
codeLoop(tif); codeLoop(tif);
@ -459,7 +501,7 @@ LZWDecode(TIFF* tif, tidata_t op0, tsize_t occ0, tsample_t s)
} }
op += len, occ -= len; op += len, occ -= len;
} else } else
*op++ = (char)code, occ--; *op++ = code, occ--;
} }
tif->tif_rawcp = (tidata_t) bp; tif->tif_rawcp = (tidata_t) bp;
@ -569,7 +611,7 @@ LZWDecodeCompat(TIFF* tif, tidata_t op0, tsize_t occ0, tsample_t s)
NextCode(tif, sp, bp, code, GetNextCodeCompat); NextCode(tif, sp, bp, code, GetNextCodeCompat);
if (code == CODE_EOI) if (code == CODE_EOI)
break; break;
*op++ = (char) code, occ--; *op++ = code, occ--;
oldcodep = sp->dec_codetab + code; oldcodep = sp->dec_codetab + code;
continue; continue;
} }
@ -642,11 +684,11 @@ LZWDecodeCompat(TIFF* tif, tidata_t op0, tsize_t occ0, tsample_t s)
*--tp = codep->value; *--tp = codep->value;
} while( (codep = codep->next) != NULL); } while( (codep = codep->next) != NULL);
} else } else
*op++ = (char) code, occ--; *op++ = code, occ--;
} }
tif->tif_rawcp = (tidata_t) bp; tif->tif_rawcp = (tidata_t) bp;
sp->lzw_nbits = (u_short) nbits; sp->lzw_nbits = nbits;
sp->lzw_nextdata = nextdata; sp->lzw_nextdata = nextdata;
sp->lzw_nextbits = nextbits; sp->lzw_nextbits = nextbits;
sp->dec_nbitsmask = nbitsmask; sp->dec_nbitsmask = nbitsmask;
@ -664,32 +706,319 @@ LZWDecodeCompat(TIFF* tif, tidata_t op0, tsize_t occ0, tsample_t s)
} }
#endif /* LZW_COMPAT */ #endif /* LZW_COMPAT */
/*
* LZW Encoding.
static void */
LZWCleanup(TIFF* tif)
{
if (tif->tif_data) {
if (DecoderState(tif)->dec_codetab)
_TIFFfree(DecoderState(tif)->dec_codetab);
_TIFFfree(tif->tif_data);
tif->tif_data = NULL;
}
}
static int static int
LZWSetupEncode(TIFF* tif) LZWSetupEncode(TIFF* tif)
{ {
TIFFError(tif->tif_name, LZWCodecState* sp = EncoderState(tif);
"LZW compression is not available to due to Unisys patent enforcement"); static const char module[] = "LZWSetupEncode";
return (0);
assert(sp != NULL);
sp->enc_hashtab = (hash_t*) _TIFFmalloc(HSIZE*sizeof (hash_t));
if (sp->enc_hashtab == NULL) {
TIFFError(module, "No space for LZW hash table");
return (0);
}
return (1);
}
/*
* Reset encoding state at the start of a strip.
*/
static int
LZWPreEncode(TIFF* tif, tsample_t s)
{
LZWCodecState *sp = EncoderState(tif);
(void) s;
assert(sp != NULL);
sp->lzw_nbits = BITS_MIN;
sp->lzw_maxcode = MAXCODE(BITS_MIN);
sp->lzw_free_ent = CODE_FIRST;
sp->lzw_nextbits = 0;
sp->lzw_nextdata = 0;
sp->enc_checkpoint = CHECK_GAP;
sp->enc_ratio = 0;
sp->enc_incount = 0;
sp->enc_outcount = 0;
/*
* The 4 here insures there is space for 2 max-sized
* codes in LZWEncode and LZWPostDecode.
*/
sp->enc_rawlimit = tif->tif_rawdata + tif->tif_rawdatasize-1 - 4;
cl_hash(sp); /* clear hash table */
sp->enc_oldcode = (hcode_t) -1; /* generates CODE_CLEAR in LZWEncode */
return (1);
}
#define CALCRATIO(sp, rat) { \
if (incount > 0x007fffff) { /* NB: shift will overflow */\
rat = outcount >> 8; \
rat = (rat == 0 ? 0x7fffffff : incount/rat); \
} else \
rat = (incount<<8) / outcount; \
}
#define PutNextCode(op, c) { \
nextdata = (nextdata << nbits) | c; \
nextbits += nbits; \
*op++ = (u_char)(nextdata >> (nextbits-8)); \
nextbits -= 8; \
if (nextbits >= 8) { \
*op++ = (u_char)(nextdata >> (nextbits-8)); \
nextbits -= 8; \
} \
outcount += nbits; \
}
/*
* Encode a chunk of pixels.
*
* Uses an open addressing double hashing (no chaining) on the
* prefix code/next character combination. We do a variant of
* Knuth's algorithm D (vol. 3, sec. 6.4) along with G. Knott's
* relatively-prime secondary probe. Here, the modular division
* first probe is gives way to a faster exclusive-or manipulation.
* Also do block compression with an adaptive reset, whereby the
* code table is cleared when the compression ratio decreases,
* but after the table fills. The variable-length output codes
* are re-sized at this point, and a CODE_CLEAR is generated
* for the decoder.
*/
static int
LZWEncode(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
{
register LZWCodecState *sp = EncoderState(tif);
register long fcode;
register hash_t *hp;
register int h, c;
hcode_t ent;
long disp;
long incount, outcount, checkpoint;
long nextdata, nextbits;
int free_ent, maxcode, nbits;
tidata_t op, limit;
(void) s;
if (sp == NULL)
return (0);
/*
* Load local state.
*/
incount = sp->enc_incount;
outcount = sp->enc_outcount;
checkpoint = sp->enc_checkpoint;
nextdata = sp->lzw_nextdata;
nextbits = sp->lzw_nextbits;
free_ent = sp->lzw_free_ent;
maxcode = sp->lzw_maxcode;
nbits = sp->lzw_nbits;
op = tif->tif_rawcp;
limit = sp->enc_rawlimit;
ent = sp->enc_oldcode;
if (ent == (hcode_t) -1 && cc > 0) {
/*
* NB: This is safe because it can only happen
* at the start of a strip where we know there
* is space in the data buffer.
*/
PutNextCode(op, CODE_CLEAR);
ent = *bp++; cc--; incount++;
}
while (cc > 0) {
c = *bp++; cc--; incount++;
fcode = ((long)c << BITS_MAX) + ent;
h = (c << HSHIFT) ^ ent; /* xor hashing */
#ifdef _WINDOWS
/*
* Check hash index for an overflow.
*/
if (h >= HSIZE)
h -= HSIZE;
#endif
hp = &sp->enc_hashtab[h];
if (hp->hash == fcode) {
ent = hp->code;
continue;
}
if (hp->hash >= 0) {
/*
* Primary hash failed, check secondary hash.
*/
disp = HSIZE - h;
if (h == 0)
disp = 1;
do {
/*
* Avoid pointer arithmetic 'cuz of
* wraparound problems with segments.
*/
if ((h -= disp) < 0)
h += HSIZE;
hp = &sp->enc_hashtab[h];
if (hp->hash == fcode) {
ent = hp->code;
goto hit;
}
} while (hp->hash >= 0);
}
/*
* New entry, emit code and add to table.
*/
/*
* Verify there is space in the buffer for the code
* and any potential Clear code that might be emitted
* below. The value of limit is setup so that there
* are at least 4 bytes free--room for 2 codes.
*/
if (op > limit) {
tif->tif_rawcc = (tsize_t)(op - tif->tif_rawdata);
TIFFFlushData1(tif);
op = tif->tif_rawdata;
}
PutNextCode(op, ent);
ent = c;
hp->code = free_ent++;
hp->hash = fcode;
if (free_ent == CODE_MAX-1) {
/* table is full, emit clear code and reset */
cl_hash(sp);
sp->enc_ratio = 0;
incount = 0;
outcount = 0;
free_ent = CODE_FIRST;
PutNextCode(op, CODE_CLEAR);
nbits = BITS_MIN;
maxcode = MAXCODE(BITS_MIN);
} else {
/*
* If the next entry is going to be too big for
* the code size, then increase it, if possible.
*/
if (free_ent > maxcode) {
nbits++;
assert(nbits <= BITS_MAX);
maxcode = (int) MAXCODE(nbits);
} else if (incount >= checkpoint) {
long rat;
/*
* Check compression ratio and, if things seem
* to be slipping, clear the hash table and
* reset state. The compression ratio is a
* 24+8-bit fractional number.
*/
checkpoint = incount+CHECK_GAP;
CALCRATIO(sp, rat);
if (rat <= sp->enc_ratio) {
cl_hash(sp);
sp->enc_ratio = 0;
incount = 0;
outcount = 0;
free_ent = CODE_FIRST;
PutNextCode(op, CODE_CLEAR);
nbits = BITS_MIN;
maxcode = MAXCODE(BITS_MIN);
} else
sp->enc_ratio = rat;
}
}
hit:
;
}
/*
* Restore global state.
*/
sp->enc_incount = incount;
sp->enc_outcount = outcount;
sp->enc_checkpoint = checkpoint;
sp->enc_oldcode = ent;
sp->lzw_nextdata = nextdata;
sp->lzw_nextbits = nextbits;
sp->lzw_free_ent = free_ent;
sp->lzw_maxcode = maxcode;
sp->lzw_nbits = nbits;
tif->tif_rawcp = op;
return (1);
}
/*
* Finish off an encoded strip by flushing the last
* string and tacking on an End Of Information code.
*/
static int
LZWPostEncode(TIFF* tif)
{
register LZWCodecState *sp = EncoderState(tif);
tidata_t op = tif->tif_rawcp;
long nextbits = sp->lzw_nextbits;
long nextdata = sp->lzw_nextdata;
long outcount = sp->enc_outcount;
int nbits = sp->lzw_nbits;
if (op > sp->enc_rawlimit) {
tif->tif_rawcc = (tsize_t)(op - tif->tif_rawdata);
TIFFFlushData1(tif);
op = tif->tif_rawdata;
}
if (sp->enc_oldcode != (hcode_t) -1) {
PutNextCode(op, sp->enc_oldcode);
sp->enc_oldcode = (hcode_t) -1;
}
PutNextCode(op, CODE_EOI);
if (nextbits > 0)
*op++ = (u_char)(nextdata << (8-nextbits));
tif->tif_rawcc = (tsize_t)(op - tif->tif_rawdata);
return (1);
}
/*
* Reset encoding hash table.
*/
static void
cl_hash(LZWCodecState* sp)
{
register hash_t *hp = &sp->enc_hashtab[HSIZE-1];
register long i = HSIZE-8;
do {
i -= 8;
hp[-7].hash = -1;
hp[-6].hash = -1;
hp[-5].hash = -1;
hp[-4].hash = -1;
hp[-3].hash = -1;
hp[-2].hash = -1;
hp[-1].hash = -1;
hp[ 0].hash = -1;
hp -= 8;
} while (i >= 0);
for (i += 8; i > 0; i--, hp--)
hp->hash = -1;
}
static void
LZWCleanup(TIFF* tif)
{
if (tif->tif_data) {
if (DecoderState(tif)->dec_codetab)
_TIFFfree(DecoderState(tif)->dec_codetab);
if (EncoderState(tif)->enc_hashtab)
_TIFFfree(EncoderState(tif)->enc_hashtab);
_TIFFfree(tif->tif_data);
tif->tif_data = NULL;
}
} }
int int
TIFFInitLZW(TIFF* tif, int scheme) TIFFInitLZW(TIFF* tif, int scheme)
{ {
assert(scheme == COMPRESSION_LZW); assert(scheme == COMPRESSION_LZW);
/* /*
* Allocate state block so tag methods have storage to record values. * Allocate state block so tag methods have storage to record values.
*/ */
@ -698,25 +1027,29 @@ TIFFInitLZW(TIFF* tif, int scheme)
goto bad; goto bad;
DecoderState(tif)->dec_codetab = NULL; DecoderState(tif)->dec_codetab = NULL;
DecoderState(tif)->dec_decode = NULL; DecoderState(tif)->dec_decode = NULL;
EncoderState(tif)->enc_hashtab = NULL;
LZWState(tif)->rw_mode = tif->tif_mode;
/* /*
* Install codec methods. * Install codec methods.
*/ */
tif->tif_setupencode = LZWSetupEncode;
tif->tif_setupdecode = LZWSetupDecode; tif->tif_setupdecode = LZWSetupDecode;
tif->tif_predecode = LZWPreDecode; tif->tif_predecode = LZWPreDecode;
tif->tif_decoderow = LZWDecode; tif->tif_decoderow = LZWDecode;
tif->tif_decodestrip = LZWDecode; tif->tif_decodestrip = LZWDecode;
tif->tif_decodetile = LZWDecode; tif->tif_decodetile = LZWDecode;
tif->tif_setupencode = LZWSetupEncode;
tif->tif_preencode = LZWPreEncode;
tif->tif_postencode = LZWPostEncode;
tif->tif_encoderow = LZWEncode;
tif->tif_encodestrip = LZWEncode;
tif->tif_encodetile = LZWEncode;
tif->tif_cleanup = LZWCleanup; tif->tif_cleanup = LZWCleanup;
/* /*
* Setup predictor setup. * Setup predictor setup.
*/ */
(void) TIFFPredictorInit(tif); (void) TIFFPredictorInit(tif);
return (1); return (1);
bad: bad:
TIFFError("TIFFInitLZW", "No space for LZW state block"); TIFFError("TIFFInitLZW", "No space for LZW state block");
return (0); return (0);