Improved libtiff compilation with OJPEG support. Now no need for patching
IJG JPEG library, hack requred by libtiff will be compiled and used in-place.
This commit is contained in:
parent
8180aa18d2
commit
6dd0fd5c64
67
contrib/ojpeg/Makefile.in
Normal file
67
contrib/ojpeg/Makefile.in
Normal file
@ -0,0 +1,67 @@
|
||||
# $Header: /cvs/maptools/cvsroot/libtiff/contrib/ojpeg/Attic/Makefile.in,v 1.1 2003-05-06 12:57:14 dron Exp $
|
||||
#
|
||||
# Tag Image File Format Library
|
||||
#
|
||||
# Copyright (c) 1988-1997 Sam Leffler
|
||||
# Copyright (c) 1991-1997 Silicon Graphics, Inc.
|
||||
#
|
||||
# Permission to use, copy, modify, distribute, and sell this software and
|
||||
# its documentation for any purpose is hereby granted without fee, provided
|
||||
# that (i) the above copyright notices and this permission notice appear in
|
||||
# all copies of the software and related documentation, and (ii) the names of
|
||||
# Sam Leffler and Silicon Graphics may not be used in any advertising or
|
||||
# publicity relating to the software without the specific, prior written
|
||||
# permission of Sam Leffler and Silicon Graphics.
|
||||
#
|
||||
# THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
|
||||
# EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
|
||||
# WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
|
||||
#
|
||||
# IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
|
||||
# ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
|
||||
# OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
||||
# WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
|
||||
# LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
||||
# OF THIS SOFTWARE.
|
||||
#
|
||||
|
||||
SRCDIR = @LIBSRCDIR@
|
||||
|
||||
#
|
||||
# VERSION: @VERSION@
|
||||
# DATE: @DATE@
|
||||
# TARGET: @TARGET@
|
||||
# CCOMPILER: @CCOMPILER@
|
||||
#
|
||||
SHELL = @SCRIPT_SH@
|
||||
SCRIPT_SH = @SCRIPT_SH@
|
||||
NULL =
|
||||
CC = @CCOMPILER@
|
||||
AR = @AR@
|
||||
AROPTS = @AROPTS@
|
||||
RANLIB = @RANLIB@
|
||||
INSTALL = @INSTALL@
|
||||
|
||||
COPTS = @GCOPTS@
|
||||
OPTIMIZER=@OPTIMIZER@
|
||||
LFSOPTS=@LFSOPTS@
|
||||
CFLAGS = @ENVOPTS@ @LIBCOPTS@ ${COPTS} ${OPTIMIZER} ${LFSOPTS} ${IPATH} ${CONF_LIBRARY}
|
||||
#
|
||||
SRCS = \
|
||||
ojpeg.c \
|
||||
${NULL}
|
||||
OBJS = \
|
||||
ojpeg.o \
|
||||
${NULL}
|
||||
TARGETS = libojpeg.a
|
||||
|
||||
all: ${TARGETS}
|
||||
|
||||
libojpeg.a: ${OBJS}
|
||||
${AR} ${AROPTS} libojpeg.a $?
|
||||
${RANLIB} libojpeg.a
|
||||
|
||||
clean:
|
||||
rm -f ${TARGETS} ${OBJS} core a.out \
|
||||
libojpeg.a
|
||||
|
@ -4,11 +4,15 @@ necessary:
|
||||
|
||||
o Ensure you are able to build with JPEG support (see config.site).
|
||||
|
||||
o #define OJPEG_SUPPORT somewhere. This can be put in tiffconf.h for
|
||||
instance.
|
||||
o Uncomment OJPEG="yes" statement in config.site or #define OJPEG_SUPPORT
|
||||
somewhere (if you don't use configure logic). This can be put in
|
||||
tiffconf.h for instance.
|
||||
|
||||
o Append the jdhuff_add.c code to the end of jdhuff.c within the IJG JPEG
|
||||
libraries jdhuff.c file and recompile libjpeg (jpeg-6b tested).
|
||||
o Compile ojpeg.c module and link it with libtiff library. If you are using
|
||||
configure script for building library it should be done automatically.
|
||||
As an another option you can append the jdhuff_add.c code to the end
|
||||
of jdhuff.c within the IJG JPEG libraries jdhuff.c file and recompile
|
||||
libjpeg (jpeg-6b tested).
|
||||
|
||||
o Rebuild cleanly.
|
||||
|
||||
|
201
contrib/ojpeg/jdhuff.h
Normal file
201
contrib/ojpeg/jdhuff.h
Normal file
@ -0,0 +1,201 @@
|
||||
/*
|
||||
* jdhuff.h
|
||||
*
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains declarations for Huffman entropy decoding routines
|
||||
* that are shared between the sequential decoder (jdhuff.c) and the
|
||||
* progressive decoder (jdphuff.c). No other modules need to see these.
|
||||
*/
|
||||
|
||||
/* Short forms of external names for systems with brain-damaged linkers. */
|
||||
|
||||
#ifdef NEED_SHORT_EXTERNAL_NAMES
|
||||
#define jpeg_make_d_derived_tbl jMkDDerived
|
||||
#define jpeg_fill_bit_buffer jFilBitBuf
|
||||
#define jpeg_huff_decode jHufDecode
|
||||
#endif /* NEED_SHORT_EXTERNAL_NAMES */
|
||||
|
||||
|
||||
/* Derived data constructed for each Huffman table */
|
||||
|
||||
#define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */
|
||||
|
||||
typedef struct {
|
||||
/* Basic tables: (element [0] of each array is unused) */
|
||||
INT32 maxcode[18]; /* largest code of length k (-1 if none) */
|
||||
/* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
|
||||
INT32 valoffset[17]; /* huffval[] offset for codes of length k */
|
||||
/* valoffset[k] = huffval[] index of 1st symbol of code length k, less
|
||||
* the smallest code of length k; so given a code of length k, the
|
||||
* corresponding symbol is huffval[code + valoffset[k]]
|
||||
*/
|
||||
|
||||
/* Link to public Huffman table (needed only in jpeg_huff_decode) */
|
||||
JHUFF_TBL *pub;
|
||||
|
||||
/* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
|
||||
* the input data stream. If the next Huffman code is no more
|
||||
* than HUFF_LOOKAHEAD bits long, we can obtain its length and
|
||||
* the corresponding symbol directly from these tables.
|
||||
*/
|
||||
int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
|
||||
UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
|
||||
} d_derived_tbl;
|
||||
|
||||
/* Expand a Huffman table definition into the derived format */
|
||||
EXTERN(void) jpeg_make_d_derived_tbl
|
||||
JPP((j_decompress_ptr cinfo, boolean isDC, int tblno,
|
||||
d_derived_tbl ** pdtbl));
|
||||
|
||||
|
||||
/*
|
||||
* Fetching the next N bits from the input stream is a time-critical operation
|
||||
* for the Huffman decoders. We implement it with a combination of inline
|
||||
* macros and out-of-line subroutines. Note that N (the number of bits
|
||||
* demanded at one time) never exceeds 15 for JPEG use.
|
||||
*
|
||||
* We read source bytes into get_buffer and dole out bits as needed.
|
||||
* If get_buffer already contains enough bits, they are fetched in-line
|
||||
* by the macros CHECK_BIT_BUFFER and GET_BITS. When there aren't enough
|
||||
* bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer
|
||||
* as full as possible (not just to the number of bits needed; this
|
||||
* prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer).
|
||||
* Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension.
|
||||
* On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains
|
||||
* at least the requested number of bits --- dummy zeroes are inserted if
|
||||
* necessary.
|
||||
*/
|
||||
|
||||
typedef INT32 bit_buf_type; /* type of bit-extraction buffer */
|
||||
#define BIT_BUF_SIZE 32 /* size of buffer in bits */
|
||||
|
||||
/* If long is > 32 bits on your machine, and shifting/masking longs is
|
||||
* reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
|
||||
* appropriately should be a win. Unfortunately we can't define the size
|
||||
* with something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8)
|
||||
* because not all machines measure sizeof in 8-bit bytes.
|
||||
*/
|
||||
|
||||
typedef struct { /* Bitreading state saved across MCUs */
|
||||
bit_buf_type get_buffer; /* current bit-extraction buffer */
|
||||
int bits_left; /* # of unused bits in it */
|
||||
} bitread_perm_state;
|
||||
|
||||
typedef struct { /* Bitreading working state within an MCU */
|
||||
/* Current data source location */
|
||||
/* We need a copy, rather than munging the original, in case of suspension */
|
||||
const JOCTET * next_input_byte; /* => next byte to read from source */
|
||||
size_t bytes_in_buffer; /* # of bytes remaining in source buffer */
|
||||
/* Bit input buffer --- note these values are kept in register variables,
|
||||
* not in this struct, inside the inner loops.
|
||||
*/
|
||||
bit_buf_type get_buffer; /* current bit-extraction buffer */
|
||||
int bits_left; /* # of unused bits in it */
|
||||
/* Pointer needed by jpeg_fill_bit_buffer. */
|
||||
j_decompress_ptr cinfo; /* back link to decompress master record */
|
||||
} bitread_working_state;
|
||||
|
||||
/* Macros to declare and load/save bitread local variables. */
|
||||
#define BITREAD_STATE_VARS \
|
||||
register bit_buf_type get_buffer; \
|
||||
register int bits_left; \
|
||||
bitread_working_state br_state
|
||||
|
||||
#define BITREAD_LOAD_STATE(cinfop,permstate) \
|
||||
br_state.cinfo = cinfop; \
|
||||
br_state.next_input_byte = cinfop->src->next_input_byte; \
|
||||
br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
|
||||
get_buffer = permstate.get_buffer; \
|
||||
bits_left = permstate.bits_left;
|
||||
|
||||
#define BITREAD_SAVE_STATE(cinfop,permstate) \
|
||||
cinfop->src->next_input_byte = br_state.next_input_byte; \
|
||||
cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
|
||||
permstate.get_buffer = get_buffer; \
|
||||
permstate.bits_left = bits_left
|
||||
|
||||
/*
|
||||
* These macros provide the in-line portion of bit fetching.
|
||||
* Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer
|
||||
* before using GET_BITS, PEEK_BITS, or DROP_BITS.
|
||||
* The variables get_buffer and bits_left are assumed to be locals,
|
||||
* but the state struct might not be (jpeg_huff_decode needs this).
|
||||
* CHECK_BIT_BUFFER(state,n,action);
|
||||
* Ensure there are N bits in get_buffer; if suspend, take action.
|
||||
* val = GET_BITS(n);
|
||||
* Fetch next N bits.
|
||||
* val = PEEK_BITS(n);
|
||||
* Fetch next N bits without removing them from the buffer.
|
||||
* DROP_BITS(n);
|
||||
* Discard next N bits.
|
||||
* The value N should be a simple variable, not an expression, because it
|
||||
* is evaluated multiple times.
|
||||
*/
|
||||
|
||||
#define CHECK_BIT_BUFFER(state,nbits,action) \
|
||||
{ if (bits_left < (nbits)) { \
|
||||
if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \
|
||||
{ action; } \
|
||||
get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }
|
||||
|
||||
#define GET_BITS(nbits) \
|
||||
(((int) (get_buffer >> (bits_left -= (nbits)))) & ((1<<(nbits))-1))
|
||||
|
||||
#define PEEK_BITS(nbits) \
|
||||
(((int) (get_buffer >> (bits_left - (nbits)))) & ((1<<(nbits))-1))
|
||||
|
||||
#define DROP_BITS(nbits) \
|
||||
(bits_left -= (nbits))
|
||||
|
||||
/* Load up the bit buffer to a depth of at least nbits */
|
||||
EXTERN(boolean) jpeg_fill_bit_buffer
|
||||
JPP((bitread_working_state * state, register bit_buf_type get_buffer,
|
||||
register int bits_left, int nbits));
|
||||
|
||||
|
||||
/*
|
||||
* Code for extracting next Huffman-coded symbol from input bit stream.
|
||||
* Again, this is time-critical and we make the main paths be macros.
|
||||
*
|
||||
* We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
|
||||
* without looping. Usually, more than 95% of the Huffman codes will be 8
|
||||
* or fewer bits long. The few overlength codes are handled with a loop,
|
||||
* which need not be inline code.
|
||||
*
|
||||
* Notes about the HUFF_DECODE macro:
|
||||
* 1. Near the end of the data segment, we may fail to get enough bits
|
||||
* for a lookahead. In that case, we do it the hard way.
|
||||
* 2. If the lookahead table contains no entry, the next code must be
|
||||
* more than HUFF_LOOKAHEAD bits long.
|
||||
* 3. jpeg_huff_decode returns -1 if forced to suspend.
|
||||
*/
|
||||
|
||||
#define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \
|
||||
{ register int nb, look; \
|
||||
if (bits_left < HUFF_LOOKAHEAD) { \
|
||||
if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
|
||||
get_buffer = state.get_buffer; bits_left = state.bits_left; \
|
||||
if (bits_left < HUFF_LOOKAHEAD) { \
|
||||
nb = 1; goto slowlabel; \
|
||||
} \
|
||||
} \
|
||||
look = PEEK_BITS(HUFF_LOOKAHEAD); \
|
||||
if ((nb = htbl->look_nbits[look]) != 0) { \
|
||||
DROP_BITS(nb); \
|
||||
result = htbl->look_sym[look]; \
|
||||
} else { \
|
||||
nb = HUFF_LOOKAHEAD+1; \
|
||||
slowlabel: \
|
||||
if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
|
||||
{ failaction; } \
|
||||
get_buffer = state.get_buffer; bits_left = state.bits_left; \
|
||||
} \
|
||||
}
|
||||
|
||||
/* Out-of-line case for Huffman code fetching */
|
||||
EXTERN(int) jpeg_huff_decode
|
||||
JPP((bitread_working_state * state, register bit_buf_type get_buffer,
|
||||
register int bits_left, d_derived_tbl * htbl, int min_bits));
|
91
contrib/ojpeg/jinclude.h
Normal file
91
contrib/ojpeg/jinclude.h
Normal file
@ -0,0 +1,91 @@
|
||||
/*
|
||||
* jinclude.h
|
||||
*
|
||||
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file exists to provide a single place to fix any problems with
|
||||
* including the wrong system include files. (Common problems are taken
|
||||
* care of by the standard jconfig symbols, but on really weird systems
|
||||
* you may have to edit this file.)
|
||||
*
|
||||
* NOTE: this file is NOT intended to be included by applications using the
|
||||
* JPEG library. Most applications need only include jpeglib.h.
|
||||
*/
|
||||
|
||||
|
||||
/* Include auto-config file to find out which system include files we need. */
|
||||
|
||||
#include "jconfig.h" /* auto configuration options */
|
||||
#define JCONFIG_INCLUDED /* so that jpeglib.h doesn't do it again */
|
||||
|
||||
/*
|
||||
* We need the NULL macro and size_t typedef.
|
||||
* On an ANSI-conforming system it is sufficient to include <stddef.h>.
|
||||
* Otherwise, we get them from <stdlib.h> or <stdio.h>; we may have to
|
||||
* pull in <sys/types.h> as well.
|
||||
* Note that the core JPEG library does not require <stdio.h>;
|
||||
* only the default error handler and data source/destination modules do.
|
||||
* But we must pull it in because of the references to FILE in jpeglib.h.
|
||||
* You can remove those references if you want to compile without <stdio.h>.
|
||||
*/
|
||||
|
||||
#ifdef HAVE_STDDEF_H
|
||||
#include <stddef.h>
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_STDLIB_H
|
||||
#include <stdlib.h>
|
||||
#endif
|
||||
|
||||
#ifdef NEED_SYS_TYPES_H
|
||||
#include <sys/types.h>
|
||||
#endif
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
/*
|
||||
* We need memory copying and zeroing functions, plus strncpy().
|
||||
* ANSI and System V implementations declare these in <string.h>.
|
||||
* BSD doesn't have the mem() functions, but it does have bcopy()/bzero().
|
||||
* Some systems may declare memset and memcpy in <memory.h>.
|
||||
*
|
||||
* NOTE: we assume the size parameters to these functions are of type size_t.
|
||||
* Change the casts in these macros if not!
|
||||
*/
|
||||
|
||||
#ifdef NEED_BSD_STRINGS
|
||||
|
||||
#include <strings.h>
|
||||
#define MEMZERO(target,size) bzero((void *)(target), (size_t)(size))
|
||||
#define MEMCOPY(dest,src,size) bcopy((const void *)(src), (void *)(dest), (size_t)(size))
|
||||
|
||||
#else /* not BSD, assume ANSI/SysV string lib */
|
||||
|
||||
#include <string.h>
|
||||
#define MEMZERO(target,size) memset((void *)(target), 0, (size_t)(size))
|
||||
#define MEMCOPY(dest,src,size) memcpy((void *)(dest), (const void *)(src), (size_t)(size))
|
||||
|
||||
#endif
|
||||
|
||||
/*
|
||||
* In ANSI C, and indeed any rational implementation, size_t is also the
|
||||
* type returned by sizeof(). However, it seems there are some irrational
|
||||
* implementations out there, in which sizeof() returns an int even though
|
||||
* size_t is defined as long or unsigned long. To ensure consistent results
|
||||
* we always use this SIZEOF() macro in place of using sizeof() directly.
|
||||
*/
|
||||
|
||||
#define SIZEOF(object) ((size_t) sizeof(object))
|
||||
|
||||
/*
|
||||
* The modules that use fread() and fwrite() always invoke them through
|
||||
* these macros. On some systems you may need to twiddle the argument casts.
|
||||
* CAUTION: argument order is different from underlying functions!
|
||||
*/
|
||||
|
||||
#define JFREAD(file,buf,sizeofbuf) \
|
||||
((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
|
||||
#define JFWRITE(file,buf,sizeofbuf) \
|
||||
((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
|
91
contrib/ojpeg/ojpeg.c
Normal file
91
contrib/ojpeg/ojpeg.c
Normal file
@ -0,0 +1,91 @@
|
||||
/*
|
||||
* jdhuff.c
|
||||
*
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains Huffman entropy decoding routines.
|
||||
*
|
||||
* Much of the complexity here has to do with supporting input suspension.
|
||||
* If the data source module demands suspension, we want to be able to back
|
||||
* up to the start of the current MCU. To do this, we copy state variables
|
||||
* into local working storage, and update them back to the permanent
|
||||
* storage only upon successful completion of an MCU.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdhuff.h" /* Declarations shared with jdphuff.c */
|
||||
|
||||
|
||||
/*
|
||||
* Expanded entropy decoder object for Huffman decoding.
|
||||
*
|
||||
* The savable_state subrecord contains fields that change within an MCU,
|
||||
* but must not be updated permanently until we complete the MCU.
|
||||
*/
|
||||
|
||||
typedef struct {
|
||||
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
||||
} savable_state;
|
||||
|
||||
/* This macro is to work around compilers with missing or broken
|
||||
* structure assignment. You'll need to fix this code if you have
|
||||
* such a compiler and you change MAX_COMPS_IN_SCAN.
|
||||
*/
|
||||
|
||||
#ifndef NO_STRUCT_ASSIGN
|
||||
#define ASSIGN_STATE(dest,src) ((dest) = (src))
|
||||
#else
|
||||
#if MAX_COMPS_IN_SCAN == 4
|
||||
#define ASSIGN_STATE(dest,src) \
|
||||
((dest).last_dc_val[0] = (src).last_dc_val[0], \
|
||||
(dest).last_dc_val[1] = (src).last_dc_val[1], \
|
||||
(dest).last_dc_val[2] = (src).last_dc_val[2], \
|
||||
(dest).last_dc_val[3] = (src).last_dc_val[3])
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_entropy_decoder pub; /* public fields */
|
||||
|
||||
/* These fields are loaded into local variables at start of each MCU.
|
||||
* In case of suspension, we exit WITHOUT updating them.
|
||||
*/
|
||||
bitread_perm_state bitstate; /* Bit buffer at start of MCU */
|
||||
savable_state saved; /* Other state at start of MCU */
|
||||
|
||||
/* These fields are NOT loaded into local working state. */
|
||||
unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
||||
|
||||
/* Pointers to derived tables (these workspaces have image lifespan) */
|
||||
d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
|
||||
d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
|
||||
|
||||
/* Precalculated info set up by start_pass for use in decode_mcu: */
|
||||
|
||||
/* Pointers to derived tables to be used for each block within an MCU */
|
||||
d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
|
||||
d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
|
||||
/* Whether we care about the DC and AC coefficient values for each block */
|
||||
boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
|
||||
boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
|
||||
} huff_entropy_decoder;
|
||||
|
||||
typedef huff_entropy_decoder * huff_entropy_ptr;
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_reset_huff_decode (register j_decompress_ptr cinfo)
|
||||
{ register huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
|
||||
register int ci = 0;
|
||||
|
||||
/* Discard encoded input bits, up to the next Byte boundary */
|
||||
entropy->bitstate.bits_left &= ~7;
|
||||
/* Re-initialize DC predictions to 0 */
|
||||
do entropy->saved.last_dc_val[ci] = 0; while (++ci < cinfo->comps_in_scan);
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user