267 lines
7.6 KiB
Plaintext
267 lines
7.6 KiB
Plaintext
|
.\" $Id: TIFFcolor.3tiff,v 1.1 2004-11-11 14:39:16 dron Exp $
|
||
|
.\"
|
||
|
.\" Copyright (c) 2003, Andrey Kiselev <dron@remotesensing.org>
|
||
|
.\"
|
||
|
.\" Permission to use, copy, modify, distribute, and sell this software and
|
||
|
.\" its documentation for any purpose is hereby granted without fee, provided
|
||
|
.\" that (i) the above copyright notices and this permission notice appear in
|
||
|
.\" all copies of the software and related documentation, and (ii) the names of
|
||
|
.\" Sam Leffler and Silicon Graphics may not be used in any advertising or
|
||
|
.\" publicity relating to the software without the specific, prior written
|
||
|
.\" permission of Sam Leffler and Silicon Graphics.
|
||
|
.\"
|
||
|
.\" THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
|
||
|
.\" EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
|
||
|
.\" WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
|
||
|
.\"
|
||
|
.\" IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
|
||
|
.\" ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
|
||
|
.\" OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
||
|
.\" WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
|
||
|
.\" LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
||
|
.\" OF THIS SOFTWARE.
|
||
|
.\"
|
||
|
.if n .po 0
|
||
|
.TH COLOR 3TIFF "December 21, 2003" "libtiff"
|
||
|
.SH NAME
|
||
|
TIFFYCbCrToRGBInit, TIFFYCbCrtoRGB, TIFFCIELabToRGBInit, TIFFCIELabToXYZ,
|
||
|
TIFFXYZToRGB \- color conversion routines.
|
||
|
.SH SYNOPSIS
|
||
|
.B "#include <tiffio.h>"
|
||
|
.sp
|
||
|
.BI "int TIFFYCbCrToRGBInit(TIFFYCbCrToRGB *" ycbcr ", float *" luma ", float *"refBlackWhite" );"
|
||
|
.br
|
||
|
.BI "void TIFFYCbCrtoRGB(TIFFYCbCrToRGB *" ycbcr ", uint32 " Y ", int32 " Cb ", int32 " Cr ", uint32 *" R ", uint32 *" G ", uint32 *" B " );"
|
||
|
.sp
|
||
|
.BI "int TIFFCIELabToRGBInit(TIFFCIELabToRGB *" cielab ", TIFFDisplay *" display ", float *" refWhite ");"
|
||
|
.br
|
||
|
.BI "void TIFFCIELabToXYZ(TIFFCIELabToRGB *" cielab ", uint32 " L ", int32 " a ", int32 " b ", float *" X ", float *" Y ", float *" Z ");"
|
||
|
.br
|
||
|
.BI "void TIFFXYZToRGB(TIFFCIELabToRGB *" cielab ", float " X ", float " Y ", float " Z" , uint32 *" R ", uint32 *" G ", uint32 *" B ");"
|
||
|
.SH DESCRIPTION
|
||
|
TIFF supports several color spaces for images stored in that format. There is
|
||
|
usually a problem of application to handle the data properly and convert
|
||
|
between different colorspaces for displaying and printing purposes. To
|
||
|
simplify this task libtiff implements several color conversion routines
|
||
|
itself. In particular, these routines used in
|
||
|
.B TIFFRGBAImage(3TIFF)
|
||
|
interface.
|
||
|
.PP
|
||
|
.B TIFFYCbCrToRGBInit()
|
||
|
used to initialize
|
||
|
.I YCbCr
|
||
|
to
|
||
|
.I RGB
|
||
|
conversion state. Allocating and freeing of the
|
||
|
.I ycbcr
|
||
|
structure belongs to programmer.
|
||
|
.I TIFFYCbCrToRGB
|
||
|
defined in
|
||
|
.B tiffio.h
|
||
|
as
|
||
|
.PP
|
||
|
.RS
|
||
|
.nf
|
||
|
typedef struct { /* YCbCr->RGB support */
|
||
|
TIFFRGBValue* clamptab; /* range clamping table */
|
||
|
int* Cr_r_tab;
|
||
|
int* Cb_b_tab;
|
||
|
int32* Cr_g_tab;
|
||
|
int32* Cb_g_tab;
|
||
|
int32* Y_tab;
|
||
|
} TIFFYCbCrToRGB;
|
||
|
.fi
|
||
|
.RE
|
||
|
.PP
|
||
|
.I luma
|
||
|
is a float array of three values representing proportions of the red, green
|
||
|
and blue in luminance, Y (see section 21 of the TIFF 6.0 specification, where
|
||
|
the YCbCr images discussed).
|
||
|
.I TIFFTAG_YCBCRCOEFFICIENTS
|
||
|
holds that values in TIFF file.
|
||
|
.I refBlackWhite
|
||
|
is a float array of 6 values which specifies a pair of headroom and footroom
|
||
|
image data values (codes) for each image component (see section 20 of the
|
||
|
TIFF 6.0 specification where the colorinmetry fields discussed).
|
||
|
.I TIFFTAG_REFERENCEBLACKWHITE
|
||
|
is responsible for storing these values in TIFF file. Following code snippet
|
||
|
should helps to understand the the technique:
|
||
|
.PP
|
||
|
.RS
|
||
|
.nf
|
||
|
float *luma, *refBlackWhite;
|
||
|
uint16 hs, vs;
|
||
|
|
||
|
/* Initialize structures */
|
||
|
ycbcr = (TIFFYCbCrToRGB*)
|
||
|
_TIFFmalloc(TIFFroundup(sizeof(TIFFYCbCrToRGB), sizeof(long))
|
||
|
+ 4*256*sizeof(TIFFRGBValue)
|
||
|
+ 2*256*sizeof(int)
|
||
|
+ 3*256*sizeof(int32));
|
||
|
if (ycbcr == NULL) {
|
||
|
TIFFError("YCbCr->RGB",
|
||
|
"No space for YCbCr->RGB conversion state");
|
||
|
exit(0);
|
||
|
}
|
||
|
|
||
|
TIFFGetFieldDefaulted(tif, TIFFTAG_YCBCRCOEFFICIENTS, &luma);
|
||
|
TIFFGetFieldDefaulted(tif, TIFFTAG_REFERENCEBLACKWHITE, &refBlackWhite);
|
||
|
if (TIFFYCbCrToRGBInit(ycbcr, luma, refBlackWhite) < 0)
|
||
|
exit(0);
|
||
|
|
||
|
/* Start conversion */
|
||
|
uint32 r, g, b;
|
||
|
uint32 Y;
|
||
|
int32 Cb, Cr;
|
||
|
|
||
|
for each pixel in image
|
||
|
TIFFYCbCrtoRGB(img->ycbcr, Y, Cb, Cr, &r, &g, &b);
|
||
|
|
||
|
/* Free state structure */
|
||
|
_TIFFfree(ycbcr);
|
||
|
.fi
|
||
|
.RE
|
||
|
.PP
|
||
|
|
||
|
.PP
|
||
|
.B TIFFCIELabToRGBInit()
|
||
|
initializes the
|
||
|
.I CIE L*a*b* 1976
|
||
|
to
|
||
|
.I RGB
|
||
|
conversion state.
|
||
|
.B TIFFCIELabToRGB
|
||
|
defined as
|
||
|
.PP
|
||
|
.RS
|
||
|
.nf
|
||
|
#define CIELABTORGB_TABLE_RANGE 1500
|
||
|
|
||
|
typedef struct { /* CIE Lab 1976->RGB support */
|
||
|
int range; /* Size of conversion table */
|
||
|
float rstep, gstep, bstep;
|
||
|
float X0, Y0, Z0; /* Reference white point */
|
||
|
TIFFDisplay display;
|
||
|
float Yr2r[CIELABTORGB_TABLE_RANGE + 1]; /* Conversion of Yr to r */
|
||
|
float Yg2g[CIELABTORGB_TABLE_RANGE + 1]; /* Conversion of Yg to g */
|
||
|
float Yb2b[CIELABTORGB_TABLE_RANGE + 1]; /* Conversion of Yb to b */
|
||
|
} TIFFCIELabToRGB;
|
||
|
.fi
|
||
|
.RE
|
||
|
.PP
|
||
|
.I display
|
||
|
is a display device description, declared as
|
||
|
.PP
|
||
|
.RS
|
||
|
.nf
|
||
|
typedef struct {
|
||
|
float d_mat[3][3]; /* XYZ -> luminance matrix */
|
||
|
float d_YCR; /* Light o/p for reference white */
|
||
|
float d_YCG;
|
||
|
float d_YCB;
|
||
|
uint32 d_Vrwr; /* Pixel values for ref. white */
|
||
|
uint32 d_Vrwg;
|
||
|
uint32 d_Vrwb;
|
||
|
float d_Y0R; /* Residual light for black pixel */
|
||
|
float d_Y0G;
|
||
|
float d_Y0B;
|
||
|
float d_gammaR; /* Gamma values for the three guns */
|
||
|
float d_gammaG;
|
||
|
float d_gammaB;
|
||
|
} TIFFDisplay;
|
||
|
.fi
|
||
|
.RE
|
||
|
.PP
|
||
|
For example, the one can use sRGB device, which has the following parameters:
|
||
|
.PP
|
||
|
.RS
|
||
|
.nf
|
||
|
TIFFDisplay display_sRGB = {
|
||
|
{ /* XYZ -> luminance matrix */
|
||
|
{ 3.2410F, -1.5374F, -0.4986F },
|
||
|
{ -0.9692F, 1.8760F, 0.0416F },
|
||
|
{ 0.0556F, -0.2040F, 1.0570F }
|
||
|
},
|
||
|
100.0F, 100.0F, 100.0F, /* Light o/p for reference white */
|
||
|
255, 255, 255, /* Pixel values for ref. white */
|
||
|
1.0F, 1.0F, 1.0F, /* Residual light o/p for black pixel */
|
||
|
2.4F, 2.4F, 2.4F, /* Gamma values for the three guns */
|
||
|
};
|
||
|
.fi
|
||
|
.RE
|
||
|
.PP
|
||
|
.I refWhite
|
||
|
is a color temperature of the reference white. The
|
||
|
.I TIFFTAG_WHITEPOINT
|
||
|
contains the chromaticity of the white point of the image from where the
|
||
|
reference white can be calculated using following formulae:
|
||
|
.PP
|
||
|
.RS
|
||
|
refWhite_Y = 100.0
|
||
|
.br
|
||
|
refWhite_X = whitePoint_x / whitePoint_y * refWhite_Y
|
||
|
.br
|
||
|
refWhite_Z = (1.0 - whitePoint_x - whitePoint_y) / whitePoint_y * refWhite_X
|
||
|
.br
|
||
|
.RE
|
||
|
.PP
|
||
|
The conversion itself performed in two steps: at the first one we will convert
|
||
|
.I CIE L*a*b* 1976
|
||
|
to
|
||
|
.I CIE XYZ
|
||
|
using
|
||
|
.B TIFFCIELabToXYZ()
|
||
|
routine, and at the second step we will convert
|
||
|
.I CIE XYZ
|
||
|
to
|
||
|
.I RGB
|
||
|
using
|
||
|
.B TIFFXYZToRGB().
|
||
|
Look at the code sample below:
|
||
|
.PP
|
||
|
.RS
|
||
|
.nf
|
||
|
float *whitePoint;
|
||
|
float refWhite[3];
|
||
|
|
||
|
/* Initialize structures */
|
||
|
img->cielab = (TIFFCIELabToRGB *)
|
||
|
_TIFFmalloc(sizeof(TIFFCIELabToRGB));
|
||
|
if (!cielab) {
|
||
|
TIFFError("CIE L*a*b*->RGB",
|
||
|
"No space for CIE L*a*b*->RGB conversion state.");
|
||
|
exit(0);
|
||
|
}
|
||
|
|
||
|
TIFFGetFieldDefaulted(tif, TIFFTAG_WHITEPOINT, &whitePoint);
|
||
|
refWhite[1] = 100.0F;
|
||
|
refWhite[0] = whitePoint[0] / whitePoint[1] * refWhite[1];
|
||
|
refWhite[2] = (1.0F - whitePoint[0] - whitePoint[1])
|
||
|
/ whitePoint[1] * refWhite[1];
|
||
|
if (TIFFCIELabToRGBInit(cielab, &display_sRGB, refWhite) < 0) {
|
||
|
TIFFError("CIE L*a*b*->RGB",
|
||
|
"Failed to initialize CIE L*a*b*->RGB conversion state.");
|
||
|
_TIFFfree(cielab);
|
||
|
exit(0);
|
||
|
}
|
||
|
|
||
|
/* Now we can start to convert */
|
||
|
uint32 r, g, b;
|
||
|
uint32 L;
|
||
|
int32 a, b;
|
||
|
float X, Y, Z;
|
||
|
|
||
|
for each pixel in image
|
||
|
TIFFCIELabToXYZ(cielab, L, a, b, &X, &Y, &Z);
|
||
|
TIFFXYZToRGB(cielab, X, Y, Z, &r, &g, &b);
|
||
|
|
||
|
/* Don't forget to free the state structure */
|
||
|
_TIFFfree(cielab);
|
||
|
.fi
|
||
|
.RE
|
||
|
.PP
|
||
|
|
||
|
.SH "SEE ALSO"
|
||
|
.IR libtiff (3TIFF),
|
||
|
.IR TIFFRGBAImage (3TIFF)
|