Remove the "examples" directory.
It is very incomplete and hasn't been updated for a long time. The idea was good, and this directory might be resurrected later. But for now, better hide it than keep something unfinished around.
This commit is contained in:
parent
fce6852d64
commit
df91dd1dd4
7
examples/.gitignore
vendored
7
examples/.gitignore
vendored
@ -1,7 +0,0 @@
|
||||
auth
|
||||
box
|
||||
box_detached
|
||||
generichash
|
||||
generichash_stream
|
||||
shorthash
|
||||
sign
|
@ -1,21 +0,0 @@
|
||||
|
||||
TARGETS = \
|
||||
auth \
|
||||
box \
|
||||
box_detached \
|
||||
generichash \
|
||||
generichash_stream \
|
||||
shorthash \
|
||||
sign
|
||||
|
||||
SODIUM_CFLAGS != pkg-config --cflags libsodium
|
||||
SODIUM_LIBS != pkg-config --libs libsodium
|
||||
CFLAGS += $(SODIUM_CFLAGS)
|
||||
LDFLAGS += $(SODIUM_LIBS)
|
||||
|
||||
all: $(TARGETS)
|
||||
|
||||
clean:
|
||||
rm -f $(TARGETS)
|
||||
|
||||
distclean: clean
|
@ -1,68 +0,0 @@
|
||||
/*
|
||||
* GraxRabble
|
||||
* example programs for libsodium.
|
||||
*/
|
||||
|
||||
#include <sodium.h> /* library header */
|
||||
|
||||
#include "utils.h" /* utility functions shared by examples */
|
||||
|
||||
/*
|
||||
* This operation computes an authentication tag for a message and a
|
||||
* secret key, and provides a way to verify that a given tag is valid
|
||||
* for a given message and a key.
|
||||
*
|
||||
* The function computing the tag deterministic: the same (message,
|
||||
* key) tuple will always produce the same output.
|
||||
*
|
||||
* However, even if the message is public, knowing the key is
|
||||
* required in order to be able to compute a valid tag. Therefore,
|
||||
* the key should remain confidential. The tag, however, can be
|
||||
* public.
|
||||
*
|
||||
* A typical use case is:
|
||||
*
|
||||
* - A prepares a message, add an authentication tag, sends it to B
|
||||
* - A doesn't store the message
|
||||
* - Later on, B sends the message and the authentication tag to A
|
||||
* - A uses the authentication tag to verify that it created this message.
|
||||
*
|
||||
* This operation does not encrypt the message. It only computes and
|
||||
* verifies an authentication tag.
|
||||
*/
|
||||
static int
|
||||
auth(void)
|
||||
{
|
||||
unsigned char key[crypto_auth_KEYBYTES];
|
||||
unsigned char mac[crypto_auth_BYTES];
|
||||
unsigned char message[MAX_INPUT_LEN];
|
||||
size_t message_len;
|
||||
int ret;
|
||||
|
||||
puts("Example: crypto_auth\n");
|
||||
|
||||
prompt_input("a key", (char*)key, sizeof key, 0);
|
||||
message_len = prompt_input("a message", (char*)message, sizeof message, 1);
|
||||
|
||||
printf("Generating %s authentication...\n", crypto_auth_primitive());
|
||||
crypto_auth(mac, message, message_len, key);
|
||||
|
||||
printf("Authentication tag: ");
|
||||
print_hex(mac, sizeof mac);
|
||||
|
||||
puts("Verifying authentication tag...");
|
||||
ret = crypto_auth_verify(mac, message, message_len, key);
|
||||
print_verification(ret);
|
||||
|
||||
sodium_memzero(key, sizeof key); /* wipe sensitive data */
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int
|
||||
main(void)
|
||||
{
|
||||
init();
|
||||
|
||||
return auth() != 0;
|
||||
}
|
135
examples/box.c
135
examples/box.c
@ -1,135 +0,0 @@
|
||||
/*
|
||||
* GraxRabble
|
||||
* example programs for libsodium.
|
||||
*/
|
||||
|
||||
#include <sodium.h> /* library header */
|
||||
|
||||
#include "utils.h" /* utility functions shared by examples */
|
||||
|
||||
/*
|
||||
* Using public-key authenticated encryption, Bob can encrypt a
|
||||
* confidential message specifically for Alice, using Alice's public
|
||||
* key.
|
||||
*
|
||||
* Using Bob's public key, Alice can verify that the encrypted
|
||||
* message was actually created by Bob and was not tampered with,
|
||||
* before eventually decrypting it.
|
||||
*
|
||||
* Alice only needs Bob's public key, the nonce and the ciphertext.
|
||||
* Bob should never ever share his secret key, even with Alice.
|
||||
*
|
||||
* And in order to send messages to Alice, Bob only needs Alice's
|
||||
* public key. Alice should never ever share her secret key either,
|
||||
* even with Bob.
|
||||
*
|
||||
* Alice can reply to Bob using the same system, without having to
|
||||
* generate a distinct key pair.
|
||||
*
|
||||
* The nonce doesn't have to be confidential, but it should be used
|
||||
* with just one invokation of crypto_box_open_easy() for a
|
||||
* particular pair of public and secret keys.
|
||||
*
|
||||
* One easy way to generate a nonce is to use randombytes_buf(),
|
||||
* considering the size of nonces the risk of any random collisions
|
||||
* is negligible. For some applications, if you wish to use nonces to
|
||||
* detect missing messages or to ignore replayed messages, it is also
|
||||
* ok to use a simple incrementing counter as a nonce.
|
||||
*
|
||||
* When doing so you must ensure that the same value can never be
|
||||
* re-used (for example you may have multiple threads or even hosts
|
||||
* generating messages using the same key pairs).
|
||||
*
|
||||
* This system provides mutual authentication. However, a typical use
|
||||
* case is to secure communications between a server, whose public
|
||||
* key is known in advance, and clients connecting anonymously.
|
||||
*/
|
||||
static int
|
||||
box(void)
|
||||
{
|
||||
unsigned char bob_pk[crypto_box_PUBLICKEYBYTES]; /* Bob's public key */
|
||||
unsigned char bob_sk[crypto_box_SECRETKEYBYTES]; /* Bob's secret key */
|
||||
|
||||
unsigned char alice_pk[crypto_box_PUBLICKEYBYTES]; /* Alice's public key */
|
||||
unsigned char alice_sk[crypto_box_SECRETKEYBYTES]; /* Alice's secret key */
|
||||
|
||||
unsigned char nonce[crypto_box_NONCEBYTES];
|
||||
unsigned char message[MAX_INPUT_LEN];
|
||||
unsigned char ciphertext[crypto_box_MACBYTES + MAX_INPUT_LEN];
|
||||
size_t message_len;
|
||||
size_t ciphertext_len;
|
||||
int ret;
|
||||
|
||||
puts("Example: crypto_box_easy\n");
|
||||
|
||||
puts("Generating keypairs...\n");
|
||||
crypto_box_keypair(bob_pk, bob_sk); /* generate Bob's keys */
|
||||
crypto_box_keypair(alice_pk, alice_sk); /* generate Alice's keys */
|
||||
|
||||
puts("Bob");
|
||||
printf("Public key: ");
|
||||
print_hex(bob_pk, sizeof bob_pk);
|
||||
printf("Secret key: ");
|
||||
print_hex(bob_sk, sizeof bob_sk);
|
||||
|
||||
puts("Alice");
|
||||
printf("Public key: ");
|
||||
print_hex(alice_pk, sizeof alice_pk);
|
||||
printf("Secret key: ");
|
||||
print_hex(alice_sk, sizeof alice_sk);
|
||||
|
||||
/* nonce must be unique per (key, message) - it can be public and deterministic */
|
||||
puts("Generating nonce...");
|
||||
randombytes_buf(nonce, sizeof nonce);
|
||||
printf("Nonce: ");
|
||||
print_hex(nonce, sizeof nonce);
|
||||
|
||||
/* read input */
|
||||
message_len = prompt_input("a message", (char*)message, sizeof message, 1);
|
||||
|
||||
print_hex(message, message_len);
|
||||
|
||||
/* encrypt and authenticate the message */
|
||||
printf("Encrypting and authenticating with %s\n\n", crypto_box_primitive());
|
||||
if (crypto_box_easy(ciphertext, message, message_len, nonce, alice_pk, bob_sk) != 0) {
|
||||
abort();
|
||||
}
|
||||
ciphertext_len = crypto_box_MACBYTES + message_len;
|
||||
|
||||
/* send the nonce and the ciphertext */
|
||||
puts("Bob sends the nonce and the ciphertext...\n");
|
||||
printf("Ciphertext len: %zu bytes - Original message length: %zu bytes\n",
|
||||
ciphertext_len, message_len);
|
||||
puts("Notice the prepended 16 byte authentication token\n");
|
||||
printf("Nonce: ");
|
||||
print_hex(nonce, sizeof nonce);
|
||||
printf("Ciphertext: ");
|
||||
print_hex(ciphertext, ciphertext_len);
|
||||
|
||||
/* decrypt the message */
|
||||
puts("Alice verifies and decrypts the ciphertext...");
|
||||
ret = crypto_box_open_easy(message, ciphertext, ciphertext_len, nonce, bob_pk,
|
||||
alice_sk);
|
||||
print_hex(message, message_len);
|
||||
|
||||
print_verification(ret);
|
||||
if (ret == 0) {
|
||||
printf("Plaintext: ");
|
||||
fwrite(message, 1U, message_len, stdout);
|
||||
putchar('\n');
|
||||
}
|
||||
sodium_memzero(bob_sk, sizeof bob_sk); /* wipe sensitive data */
|
||||
sodium_memzero(alice_sk, sizeof alice_sk);
|
||||
sodium_memzero(message, sizeof message);
|
||||
sodium_memzero(ciphertext, sizeof ciphertext);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int
|
||||
main(void)
|
||||
{
|
||||
init();
|
||||
|
||||
return box() != 0;
|
||||
}
|
@ -1,134 +0,0 @@
|
||||
/*
|
||||
* GraxRabble
|
||||
* example programs for libsodium.
|
||||
*/
|
||||
|
||||
#include <sodium.h> /* library header */
|
||||
|
||||
#include "utils.h" /* utility functions shared by examples */
|
||||
|
||||
/*
|
||||
* Using public-key authenticated encryption, Bob can encrypt a
|
||||
* confidential message specifically for Alice, using Alice's public
|
||||
* key.
|
||||
*
|
||||
* Using Bob's public key, Alice can verify that the encrypted
|
||||
* message was actually created by Bob and was not tampered with,
|
||||
* before eventually decrypting it.
|
||||
*
|
||||
* Alice only needs Bob's public key, the nonce and the ciphertext.
|
||||
* Bob should never ever share his secret key, even with Alice.
|
||||
*
|
||||
* And in order to send messages to Alice, Bob only needs Alice's
|
||||
* public key. Alice should never ever share her secret key either,
|
||||
* even with Bob.
|
||||
*
|
||||
* Alice can reply to Bob using the same system, without having to
|
||||
* generate a distinct key pair.
|
||||
*
|
||||
* The nonce doesn't have to be confidential, but it should be used
|
||||
* with just one invokation of crypto_box_open_easy() for a
|
||||
* particular pair of public and secret keys.
|
||||
*
|
||||
* One easy way to generate a nonce is to use randombytes_buf(),
|
||||
* considering the size of nonces the risk of any random collisions
|
||||
* is negligible. For some applications, if you wish to use nonces to
|
||||
* detect missing messages or to ignore replayed messages, it is also
|
||||
* ok to use a simple incrementing counter as a nonce.
|
||||
*
|
||||
* When doing so you must ensure that the same value can never be
|
||||
* re-used (for example you may have multiple threads or even hosts
|
||||
* generating messages using the same key pairs).
|
||||
*
|
||||
* This system provides mutual authentication. However, a typical use
|
||||
* case is to secure communications between a server, whose public
|
||||
* key is known in advance, and clients connecting anonymously.
|
||||
*/
|
||||
static int
|
||||
box_detached(void)
|
||||
{
|
||||
unsigned char bob_pk[crypto_box_PUBLICKEYBYTES]; /* Bob's public key */
|
||||
unsigned char bob_sk[crypto_box_SECRETKEYBYTES]; /* Bob's secret key */
|
||||
|
||||
unsigned char alice_pk[crypto_box_PUBLICKEYBYTES]; /* Alice's public key */
|
||||
unsigned char alice_sk[crypto_box_SECRETKEYBYTES]; /* Alice's secret key */
|
||||
|
||||
unsigned char nonce[crypto_box_NONCEBYTES];
|
||||
unsigned char message[MAX_INPUT_LEN];
|
||||
unsigned char mac[crypto_box_MACBYTES];
|
||||
unsigned char ciphertext[MAX_INPUT_LEN];
|
||||
size_t message_len;
|
||||
int ret;
|
||||
|
||||
puts("Example: crypto_box_detached\n");
|
||||
|
||||
puts("Generating keypairs...\n");
|
||||
crypto_box_keypair(bob_pk, bob_sk); /* generate Bob's keys */
|
||||
crypto_box_keypair(alice_pk, alice_sk); /* generate Alice's keys */
|
||||
|
||||
puts("Bob");
|
||||
printf("Public key: ");
|
||||
print_hex(bob_pk, sizeof bob_pk);
|
||||
printf("Secret key: ");
|
||||
print_hex(bob_sk, sizeof bob_sk);
|
||||
|
||||
puts("Alice");
|
||||
printf("Public key: ");
|
||||
print_hex(alice_pk, sizeof alice_pk);
|
||||
printf("Secret key: ");
|
||||
print_hex(alice_sk, sizeof alice_sk);
|
||||
|
||||
/* nonce must be unique per (key, message) - it can be public and deterministic */
|
||||
puts("Generating nonce...");
|
||||
randombytes_buf(nonce, sizeof nonce);
|
||||
printf("Nonce: ");
|
||||
print_hex(nonce, sizeof nonce);
|
||||
|
||||
/* read input */
|
||||
message_len = prompt_input("a message", (char*)message, sizeof message, 1);
|
||||
|
||||
print_hex(message, message_len);
|
||||
|
||||
/* encrypt and authenticate the message */
|
||||
printf("Encrypting and authenticating with %s\n\n", crypto_box_primitive());
|
||||
if (crypto_box_detached(ciphertext, mac, message, message_len, nonce,
|
||||
alice_pk, bob_sk) != 0) {
|
||||
abort();
|
||||
}
|
||||
|
||||
/* send the nonce, the MAC and the ciphertext */
|
||||
puts("Bob sends the nonce, the MAC and the ciphertext...\n");
|
||||
printf("Nonce: ");
|
||||
print_hex(nonce, sizeof nonce);
|
||||
printf("MAC: ");
|
||||
print_hex(mac, sizeof mac);
|
||||
printf("Ciphertext: ");
|
||||
print_hex(ciphertext, message_len);
|
||||
|
||||
/* decrypt the message */
|
||||
puts("Alice verifies the MAC and decrypts the ciphertext...");
|
||||
ret = crypto_box_open_detached(message, ciphertext, mac, message_len, nonce,
|
||||
bob_pk, alice_sk);
|
||||
print_hex(message, message_len);
|
||||
|
||||
print_verification(ret);
|
||||
if (ret == 0) {
|
||||
printf("Plaintext: ");
|
||||
fwrite(message, 1U, message_len, stdout);
|
||||
putchar('\n');
|
||||
}
|
||||
sodium_memzero(bob_sk, sizeof bob_sk); /* wipe sensitive data */
|
||||
sodium_memzero(alice_sk, sizeof alice_sk);
|
||||
sodium_memzero(message, sizeof message);
|
||||
sodium_memzero(ciphertext, sizeof ciphertext);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int
|
||||
main(void)
|
||||
{
|
||||
init();
|
||||
|
||||
return box_detached() != 0;
|
||||
}
|
@ -1,80 +0,0 @@
|
||||
/*
|
||||
* GraxRabble
|
||||
* example programs for libsodium.
|
||||
*/
|
||||
|
||||
#include <sodium.h> /* library header */
|
||||
|
||||
#include "utils.h" /* utility functions shared by examples */
|
||||
|
||||
/*
|
||||
* This function computes a fixed-length fingerprint for an arbitrary long message.
|
||||
*
|
||||
* Sample use cases:
|
||||
*
|
||||
* File integrity checking
|
||||
* Creating unique identifiers to index arbitrary long data
|
||||
*
|
||||
* The crypto_generichash() function puts a fingerprint of the
|
||||
* message in whose length is inlen bytes into out. The output size
|
||||
* can be chosen by the application.
|
||||
*
|
||||
* The minimum recommended output size is crypto_generichash_BYTES.
|
||||
* This size makes it practically impossible for two messages to
|
||||
* produce the same fingerprint.
|
||||
*
|
||||
* But for specific use cases, the size can be any value between
|
||||
* crypto_generichash_BYTES_MIN (included) and
|
||||
* crypto_generichash_BYTES_MAX (included).
|
||||
*
|
||||
* key can be NULL and keylen can be 0. In this case, a message will
|
||||
* always have the same fingerprint, similar to the MD5 or SHA-1
|
||||
* functions for which crypto_generichash() is a faster and more
|
||||
* secure alternative.
|
||||
*
|
||||
* But a key can also be specified. A message will always have the
|
||||
* same fingerprint for a given key, but different keys used to hash
|
||||
* the same message are very likely to produce distinct fingerprints.
|
||||
*
|
||||
* In particular, the key can be used to make sure that different
|
||||
* applications generate different fingerprints even if they process
|
||||
* the same data.
|
||||
*
|
||||
* The recommended key size is crypto_generichash_KEYBYTES bytes.
|
||||
*
|
||||
* However, the key size can by any value between
|
||||
* crypto_generichash_KEYBYTES_MIN (included) and
|
||||
* crypto_generichash_KEYBYTES_MAX (included).
|
||||
*/
|
||||
void
|
||||
generichash(void)
|
||||
{
|
||||
unsigned char key[crypto_generichash_KEYBYTES_MAX];
|
||||
unsigned char hash[crypto_generichash_BYTES];
|
||||
unsigned char message[MAX_INPUT_LEN];
|
||||
size_t message_len;
|
||||
size_t key_len;
|
||||
|
||||
puts("Example: crypto_generichash\n");
|
||||
|
||||
key_len = prompt_input("a key", (char*)key, sizeof key, 1);
|
||||
message_len = prompt_input("a message", (char*)message, sizeof message, 1);
|
||||
|
||||
printf("Hashing message with %s\n", crypto_generichash_primitive());
|
||||
if (crypto_generichash(hash, sizeof hash, message, message_len,
|
||||
key, key_len) != 0) {
|
||||
puts("Couldn't hash the message, probably due to the key length");
|
||||
} else {
|
||||
printf("Hash: ");
|
||||
print_hex(hash, sizeof hash);
|
||||
}
|
||||
}
|
||||
|
||||
int
|
||||
main(void)
|
||||
{
|
||||
init();
|
||||
generichash();
|
||||
|
||||
return 0;
|
||||
}
|
@ -1,58 +0,0 @@
|
||||
/*
|
||||
* GraxRabble
|
||||
* example programs for libsodium.
|
||||
*/
|
||||
|
||||
#include <sodium.h> /* library header */
|
||||
|
||||
#include "utils.h" /* utility functions shared by examples */
|
||||
|
||||
/*
|
||||
* Streaming variant of generic hash. This has the ability to hash
|
||||
* data in chunks at a time and compute the same result as hashing
|
||||
* all of the data at once.
|
||||
*/
|
||||
void
|
||||
generichash_stream(void)
|
||||
{
|
||||
unsigned char key[crypto_generichash_KEYBYTES_MAX];
|
||||
unsigned char hash[crypto_generichash_BYTES];
|
||||
unsigned char message_part[MAX_INPUT_LEN];
|
||||
crypto_generichash_state state;
|
||||
size_t message_part_len;
|
||||
|
||||
puts("Example: crypto_generichashstream\n");
|
||||
|
||||
prompt_input("a key", (char*)key, sizeof key, 1);
|
||||
|
||||
printf("Hashing message with %s\n", crypto_generichash_primitive());
|
||||
|
||||
/* initialize the stream */
|
||||
if (crypto_generichash_init(&state, key, sizeof key, sizeof hash) != 0) {
|
||||
puts("Couldn't hash the message, probably due to the key length");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
for(;;) {
|
||||
message_part_len = prompt_input("the next part of the message",
|
||||
(char*)message_part, sizeof message_part, 1);
|
||||
if (message_part_len == 0)
|
||||
break;
|
||||
|
||||
/* keep appending data */
|
||||
crypto_generichash_update(&state, message_part, message_part_len);
|
||||
}
|
||||
crypto_generichash_final(&state, hash, sizeof hash);
|
||||
|
||||
printf("Hash: ");
|
||||
print_hex(hash, sizeof hash);
|
||||
}
|
||||
|
||||
int
|
||||
main(void)
|
||||
{
|
||||
init();
|
||||
generichash_stream();
|
||||
|
||||
return 0;
|
||||
}
|
@ -1,58 +0,0 @@
|
||||
/*
|
||||
* GraxRabble
|
||||
* example programs for libsodium.
|
||||
*/
|
||||
|
||||
#include <sodium.h> /* library header */
|
||||
|
||||
#include "utils.h" /* utility functions shared by examples */
|
||||
|
||||
/*
|
||||
* Many applications and programming language implementations were
|
||||
* recently found to be vulnerable to denial-of-service attacks when
|
||||
* a hash function with weak security guarantees, such as Murmurhash
|
||||
* 3, was used to construct a hash table.
|
||||
*
|
||||
* In order to address this, Sodium provides the crypto_shorthash()
|
||||
* function, which outputs short but unpredictable (without knowing
|
||||
* the secret key) values suitable for picking a list in a hash table
|
||||
* for a given key.
|
||||
*
|
||||
* This function is optimized for short inputs.
|
||||
*
|
||||
* The output of this function is only 64 bits. Therefore, it should
|
||||
* not be considered collision-resistant.
|
||||
*
|
||||
* Use cases:
|
||||
*
|
||||
* - Hash tables
|
||||
* - Probabilistic data structures such as Bloom filters
|
||||
* - Integrity checking in interactive protocols
|
||||
*/
|
||||
void
|
||||
shorthash(void)
|
||||
{
|
||||
unsigned char key[crypto_shorthash_KEYBYTES];
|
||||
unsigned char hash[crypto_shorthash_BYTES];
|
||||
unsigned char message[MAX_INPUT_LEN];
|
||||
size_t message_len;
|
||||
|
||||
puts("Example: crypto_shorthash\n");
|
||||
|
||||
prompt_input("a key", (char*)key, sizeof key, 0);
|
||||
message_len = prompt_input("a message", (char*)message, sizeof message, 1);
|
||||
|
||||
printf("Hashing the message with %s\n", crypto_shorthash_primitive());
|
||||
crypto_shorthash(hash, message, message_len, key);
|
||||
printf("Hash: ");
|
||||
print_hex(hash, sizeof hash);
|
||||
}
|
||||
|
||||
int
|
||||
main(void)
|
||||
{
|
||||
init();
|
||||
shorthash();
|
||||
|
||||
return 0;
|
||||
}
|
@ -1,78 +0,0 @@
|
||||
/*
|
||||
* GraxRabble
|
||||
* example programs for libsodium.
|
||||
*/
|
||||
|
||||
#include <sodium.h> /* library header */
|
||||
|
||||
#include "utils.h" /* utility functions shared by examples */
|
||||
|
||||
/*
|
||||
* Signs a message with secret key which will authenticate a message.
|
||||
* Everybody else can use the public key to ensure that the message is both
|
||||
* valid and untampered.
|
||||
*
|
||||
* Note that the signed message will have 16 bytes of signature prepended.
|
||||
* Ensure that the signed buffer is at least crypto_sign_BYTES longer then
|
||||
* the actual message.
|
||||
*/
|
||||
static int
|
||||
sign(void)
|
||||
{
|
||||
unsigned char pk[crypto_sign_PUBLICKEYBYTES]; /* Bob's public key */
|
||||
unsigned char sk[crypto_sign_SECRETKEYBYTES]; /* Bob's secret key */
|
||||
unsigned char message[MAX_INPUT_LEN];
|
||||
unsigned char message_signed[crypto_sign_BYTES + MAX_INPUT_LEN];
|
||||
unsigned long long message_len;
|
||||
unsigned long long message_signed_len;
|
||||
int ret;
|
||||
|
||||
puts("Example: crypto_sign\n");
|
||||
|
||||
puts("Generating keypair...");
|
||||
crypto_sign_keypair(pk, sk); /* generate Bob's keys */
|
||||
|
||||
printf("Public key: ");
|
||||
print_hex(pk, sizeof pk);
|
||||
printf("Secret key: ");
|
||||
print_hex(sk, sizeof sk);
|
||||
puts("The secret key, as returned by crypto_sign_keypair(), actually includes "
|
||||
"a copy of the public key, in order to avoid a scalar multiplication "
|
||||
"when signing messages.");
|
||||
|
||||
message_len = prompt_input("a message", (char*)message, sizeof message, 1);
|
||||
|
||||
printf("Signing message with %s...\n", crypto_sign_primitive());
|
||||
crypto_sign(message_signed, &message_signed_len, message, message_len, sk);
|
||||
|
||||
sodium_memzero(sk, sizeof sk); /* wipe sensitive data */
|
||||
|
||||
printf("Signed message:");
|
||||
print_hex(message_signed, message_signed_len);
|
||||
printf("A %u bytes signature was prepended to the message\n",
|
||||
crypto_sign_BYTES);
|
||||
|
||||
printf("Signature: ");
|
||||
print_hex(message_signed, crypto_sign_BYTES);
|
||||
printf("Message: ");
|
||||
fwrite(message_signed + crypto_sign_BYTES, 1U,
|
||||
message_signed_len - crypto_sign_BYTES, stdout);
|
||||
putchar('\n');
|
||||
|
||||
puts("Validating message...");
|
||||
ret = crypto_sign_open(message, &message_len, message_signed,
|
||||
message_signed_len, pk);
|
||||
print_verification(ret);
|
||||
if (ret == 0)
|
||||
printf("Message: %s\n", message);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int
|
||||
main(void)
|
||||
{
|
||||
init();
|
||||
|
||||
return sign() != 0;
|
||||
}
|
110
examples/utils.h
110
examples/utils.h
@ -1,110 +0,0 @@
|
||||
/*
|
||||
* Utility functions shared by all the demo programs.
|
||||
*/
|
||||
#ifndef UTILS_H
|
||||
#define UTILS_H
|
||||
|
||||
#include <limits.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include <sodium.h>
|
||||
|
||||
#define MAX_INPUT_LEN 4096
|
||||
|
||||
/*
|
||||
* print_hex() is a wrapper around sodium_bin2hex() which allocates
|
||||
* temporary memory then immediately prints the result followed by \n
|
||||
*/
|
||||
static void
|
||||
print_hex(const void *bin, const size_t bin_len)
|
||||
{
|
||||
char *hex;
|
||||
size_t hex_size;
|
||||
|
||||
if (bin_len >= SIZE_MAX / 2) {
|
||||
abort();
|
||||
}
|
||||
hex_size = bin_len * 2 + 1;
|
||||
if ((hex = malloc(hex_size)) == NULL) {
|
||||
abort();
|
||||
}
|
||||
/* the library supplies a few utility functions like the one below */
|
||||
if (sodium_bin2hex(hex, hex_size, bin, bin_len) == NULL) {
|
||||
abort();
|
||||
}
|
||||
puts(hex);
|
||||
free(hex);
|
||||
}
|
||||
|
||||
/*
|
||||
* Display a prompt for input by user. It will save the input into a buffer
|
||||
* of a specific size with room for the null terminator while removing
|
||||
* trailing newline characters.
|
||||
*/
|
||||
static size_t
|
||||
prompt_input(const char *prompt, char *input, const size_t max_input_len,
|
||||
int variable_length)
|
||||
{
|
||||
char input_tmp[MAX_INPUT_LEN + 1U];
|
||||
size_t actual_input_len;
|
||||
|
||||
if (variable_length != 0) {
|
||||
printf("\nEnter %s (%zu bytes max) > ", prompt, max_input_len);
|
||||
} else {
|
||||
printf("\nEnter %s (%zu bytes) > ", prompt, max_input_len);
|
||||
}
|
||||
fflush(stdout);
|
||||
if (fgets(input_tmp, sizeof input_tmp, stdin) == NULL) {
|
||||
input_tmp[0] = '\0';
|
||||
}
|
||||
actual_input_len = strlen(input_tmp);
|
||||
|
||||
/* trim \n */
|
||||
if (actual_input_len > 0 && input_tmp[actual_input_len - 1] == '\n') {
|
||||
input_tmp[actual_input_len - 1] = '\0';
|
||||
--actual_input_len;
|
||||
}
|
||||
|
||||
if (actual_input_len > max_input_len) {
|
||||
printf("Warning: truncating input to %zu bytes\n\n", max_input_len);
|
||||
actual_input_len = max_input_len;
|
||||
} else if (actual_input_len < max_input_len && variable_length == 0) {
|
||||
printf("Warning: %zu bytes expected, %zu bytes given: padding with zeros\n\n",
|
||||
max_input_len, actual_input_len);
|
||||
memset(input, 0, max_input_len);
|
||||
} else {
|
||||
printf("Length: %zu bytes\n\n", actual_input_len);
|
||||
}
|
||||
|
||||
memcpy(input, input_tmp, actual_input_len);
|
||||
if (variable_length == 0) {
|
||||
return max_input_len;
|
||||
} else {
|
||||
return actual_input_len;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Display whether the function was sucessful or failed.
|
||||
*/
|
||||
static void
|
||||
print_verification(int ret)
|
||||
{
|
||||
if (ret == 0)
|
||||
puts("Success!\n");
|
||||
else
|
||||
puts("Failure.\n");
|
||||
}
|
||||
|
||||
static void
|
||||
init(void)
|
||||
{
|
||||
if (sodium_init() != 0) {
|
||||
abort();
|
||||
}
|
||||
printf("Using libsodium %s\n", sodium_version_string());
|
||||
}
|
||||
|
||||
#endif /* UTILS_H */
|
Loading…
Reference in New Issue
Block a user