/* pngrutil.c - utilities to read a png file libpng 1.0 beta 2 - version 0.88 For conditions of distribution and use, see copyright notice in png.h Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc. January 25, 1996 */ #define PNG_INTERNAL #include "png.h" /* grab an uint 32 from a buffer */ png_uint_32 png_get_uint_32(png_bytep buf) { png_uint_32 i; i = ((png_uint_32)(*buf) << 24) + ((png_uint_32)(*(buf + 1)) << 16) + ((png_uint_32)(*(buf + 2)) << 8) + (png_uint_32)(*(buf + 3)); return i; } /* grab an uint 16 from a buffer */ png_uint_16 png_get_uint_16(png_bytep buf) { png_uint_16 i; i = (png_uint_16)(((png_uint_16)(*buf) << 8) + (png_uint_16)(*(buf + 1))); return i; } /* read data, and run it through the crc */ void png_crc_read(png_structp png_ptr, png_bytep buf, png_uint_32 length) { png_read_data(png_ptr, buf, length); png_calculate_crc(png_ptr, buf, length); } /* skip data, but calcuate the crc anyway */ void png_crc_skip(png_structp png_ptr, png_uint_32 length) { png_uint_32 i; for (i = length; i > png_ptr->zbuf_size; i -= png_ptr->zbuf_size) { png_read_data(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size); png_calculate_crc(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size); } if (i) { png_read_data(png_ptr, png_ptr->zbuf, i); png_calculate_crc(png_ptr, png_ptr->zbuf, i); } } /* read and check the IDHR chunk */ void png_handle_IHDR(png_structp png_ptr, png_infop info, png_uint_32 length) { png_byte buf[13]; png_uint_32 width, height; int bit_depth, color_type, compression_type, filter_type; int interlace_type; /* check the length */ if (length != 13) png_error(png_ptr, "Invalid IHDR chunk"); png_crc_read(png_ptr, buf, 13); width = png_get_uint_32(buf); height = png_get_uint_32(buf + 4); bit_depth = buf[8]; color_type = buf[9]; compression_type = buf[10]; filter_type = buf[11]; interlace_type = buf[12]; /* check for width and height valid values */ if (width == 0 || height == 0) png_error(png_ptr, "Invalid Width or Height Found"); /* check other values */ if (bit_depth != 1 && bit_depth != 2 && bit_depth != 4 && bit_depth != 8 && bit_depth != 16) png_error(png_ptr, "Invalid Bit Depth Found"); if (color_type < 0 || color_type == 1 || color_type == 5 || color_type > 6) png_error(png_ptr, "Invalid Color Type Found"); if (color_type == PNG_COLOR_TYPE_PALETTE && bit_depth == 16) png_error(png_ptr, "Found Invalid Color Type and Bit Depth Combination"); if ((color_type == PNG_COLOR_TYPE_RGB || color_type == PNG_COLOR_TYPE_GRAY_ALPHA || color_type == PNG_COLOR_TYPE_RGB_ALPHA) && bit_depth < 8) png_error(png_ptr, "Found Invalid Color Type and Bit Depth Combination"); if (interlace_type > 1) png_error(png_ptr, "Found Invalid Interlace Value"); if (compression_type > 0) png_error(png_ptr, "Found Invalid Compression Value"); if (filter_type > 0) png_error(png_ptr, "Found Invalid Filter Value"); /* set internal variables */ png_ptr->width = width; png_ptr->height = height; png_ptr->bit_depth = (png_byte)bit_depth; png_ptr->interlaced = (png_byte)interlace_type; png_ptr->color_type = (png_byte)color_type; /* find number of channels */ switch (png_ptr->color_type) { case 0: case 3: png_ptr->channels = 1; break; case 2: png_ptr->channels = 3; break; case 4: png_ptr->channels = 2; break; case 6: png_ptr->channels = 4; break; } /* set up other useful info */ png_ptr->pixel_depth = (png_byte)(png_ptr->bit_depth * png_ptr->channels); png_ptr->rowbytes = ((png_ptr->width * (png_uint_32)png_ptr->pixel_depth + 7) >> 3); /* call the IHDR callback (which should just set up info) */ png_read_IHDR(png_ptr, info, width, height, bit_depth, color_type, compression_type, filter_type, interlace_type); } /* read and check the palette */ void png_handle_PLTE(png_structp png_ptr, png_infop info, png_uint_32 length) { int num, i; png_colorp palette; if (length % 3) png_error(png_ptr, "Invalid Palette Chunk"); num = (int)length / 3; palette = (png_colorp)png_large_malloc(png_ptr, num * sizeof (png_color)); png_ptr->do_free |= PNG_FREE_PALETTE; for (i = 0; i < num; i++) { png_byte buf[3]; png_crc_read(png_ptr, buf, 3); /* don't depend upon png_color being any order */ palette[i].red = buf[0]; palette[i].green = buf[1]; palette[i].blue = buf[2]; } png_ptr->palette = palette; png_ptr->num_palette = (png_uint_16)num; png_read_PLTE(png_ptr, info, palette, num); } #if defined(PNG_READ_gAMA_SUPPORTED) void png_handle_gAMA(png_structp png_ptr, png_infop info, png_uint_32 length) { png_uint_32 igamma; float gamma; png_byte buf[4]; if (length != 4) { png_warning(png_ptr, "Incorrect gAMA chunk length"); png_crc_skip(png_ptr, length); return; } png_crc_read(png_ptr, buf, 4); igamma = png_get_uint_32(buf); /* check for zero gamma */ if (!igamma) return; gamma = (float)igamma / (float)100000.0; png_read_gAMA(png_ptr, info, gamma); png_ptr->gamma = gamma; } #endif #if defined(PNG_READ_sBIT_SUPPORTED) void png_handle_sBIT(png_structp png_ptr, png_infop info, png_uint_32 length) { int slen; png_byte buf[4]; buf[0] = buf[1] = buf[2] = buf[3] = 0; if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) slen = 3; else slen = png_ptr->channels; if (length != (png_uint_32)slen) { png_warning(png_ptr, "Incorrect sBIT chunk length"); png_crc_skip(png_ptr, length); return; } png_crc_read(png_ptr, buf, length); if (png_ptr->color_type & PNG_COLOR_MASK_COLOR) { png_ptr->sig_bit.red = buf[0]; png_ptr->sig_bit.green = buf[1]; png_ptr->sig_bit.blue = buf[2]; png_ptr->sig_bit.alpha = buf[3]; } else { png_ptr->sig_bit.gray = buf[0]; png_ptr->sig_bit.alpha = buf[1]; } png_read_sBIT(png_ptr, info, &(png_ptr->sig_bit)); } #endif #if defined(PNG_READ_cHRM_SUPPORTED) void png_handle_cHRM(png_structp png_ptr, png_infop info, png_uint_32 length) { png_byte buf[4]; png_uint_32 v; float white_x, white_y, red_x, red_y, green_x, green_y, blue_x, blue_y; if (length != 32) { png_warning(png_ptr, "Incorrect cHRM chunk length"); png_crc_skip(png_ptr, length); return; } png_crc_read(png_ptr, buf, 4); v = png_get_uint_32(buf); white_x = (float)v / (float)100000.0; png_crc_read(png_ptr, buf, 4); v = png_get_uint_32(buf); white_y = (float)v / (float)100000.0; png_crc_read(png_ptr, buf, 4); v = png_get_uint_32(buf); red_x = (float)v / (float)100000.0; png_crc_read(png_ptr, buf, 4); v = png_get_uint_32(buf); red_y = (float)v / (float)100000.0; png_crc_read(png_ptr, buf, 4); v = png_get_uint_32(buf); green_x = (float)v / (float)100000.0; png_crc_read(png_ptr, buf, 4); v = png_get_uint_32(buf); green_y = (float)v / (float)100000.0; png_crc_read(png_ptr, buf, 4); v = png_get_uint_32(buf); blue_x = (float)v / (float)100000.0; png_crc_read(png_ptr, buf, 4); v = png_get_uint_32(buf); blue_y = (float)v / (float)100000.0; png_read_cHRM(png_ptr, info, white_x, white_y, red_x, red_y, green_x, green_y, blue_x, blue_y); } #endif #if defined(PNG_READ_tRNS_SUPPORTED) void png_handle_tRNS(png_structp png_ptr, png_infop info, png_uint_32 length) { if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) { if (length > png_ptr->num_palette) { png_warning(png_ptr, "Incorrect tRNS chunk length"); png_crc_skip(png_ptr, length); return; } png_ptr->trans = (png_bytep)png_large_malloc(png_ptr, length); png_ptr->do_free |= PNG_FREE_TRANS; png_crc_read(png_ptr, png_ptr->trans, length); png_ptr->num_trans = (png_uint_16)length; } else if (png_ptr->color_type == PNG_COLOR_TYPE_RGB) { png_byte buf[6]; if (length != 6) { png_warning(png_ptr, "Incorrect tRNS chunk length"); png_crc_skip(png_ptr, length); return; } png_crc_read(png_ptr, buf, length); png_ptr->num_trans = 3; png_ptr->trans_values.red = png_get_uint_16(buf); png_ptr->trans_values.green = png_get_uint_16(buf + 2); png_ptr->trans_values.blue = png_get_uint_16(buf + 4); } else if (png_ptr->color_type == PNG_COLOR_TYPE_GRAY) { png_byte buf[6]; if (length != 2) { png_warning(png_ptr, "Incorrect tRNS chunk length"); png_crc_skip(png_ptr, length); return; } png_crc_read(png_ptr, buf, 2); png_ptr->num_trans = 1; png_ptr->trans_values.gray = png_get_uint_16(buf); } else png_warning(png_ptr, "Invalid tRNS chunk"); png_read_tRNS(png_ptr, info, png_ptr->trans, png_ptr->num_trans, &(png_ptr->trans_values)); } #endif #if defined(PNG_READ_bKGD_SUPPORTED) void png_handle_bKGD(png_structp png_ptr, png_infop info, png_uint_32 length) { int truelen; png_byte buf[6]; if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) truelen = 1; else if (png_ptr->color_type & PNG_COLOR_MASK_COLOR) truelen = 6; else truelen = 2; if (length != (png_uint_32)truelen) { png_warning(png_ptr, "Incorrect bKGD chunk length"); png_crc_skip(png_ptr, length); return; } png_crc_read(png_ptr, buf, length); if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) png_ptr->background.index = buf[0]; else if (!(png_ptr->color_type & PNG_COLOR_MASK_COLOR)) png_ptr->background.gray = png_get_uint_16(buf); else { png_ptr->background.red = png_get_uint_16(buf); png_ptr->background.green = png_get_uint_16(buf + 2); png_ptr->background.blue = png_get_uint_16(buf + 4); } png_read_bKGD(png_ptr, info, &(png_ptr->background)); } #endif #if defined(PNG_READ_hIST_SUPPORTED) void png_handle_hIST(png_structp png_ptr, png_infop info, png_uint_32 length) { int num, i; if (length != 2 * png_ptr->num_palette) { png_warning(png_ptr, "Incorrect hIST chunk length"); png_crc_skip(png_ptr, length); return; } num = (int)length / 2; png_ptr->hist = (png_uint_16p)png_large_malloc(png_ptr, num * sizeof (png_uint_16)); png_ptr->do_free |= PNG_FREE_HIST; for (i = 0; i < num; i++) { png_byte buf[2]; png_crc_read(png_ptr, buf, 2); png_ptr->hist[i] = png_get_uint_16(buf); } png_read_hIST(png_ptr, info, png_ptr->hist); } #endif #if defined(PNG_READ_pHYs_SUPPORTED) void png_handle_pHYs(png_structp png_ptr, png_infop info, png_uint_32 length) { png_byte buf[9]; png_uint_32 res_x, res_y; int unit_type; if (length != 9) { png_warning(png_ptr, "Incorrect pHYs chunk length"); png_crc_skip(png_ptr, length); return; } png_crc_read(png_ptr, buf, 9); res_x = png_get_uint_32(buf); res_y = png_get_uint_32(buf + 4); unit_type = buf[8]; png_read_pHYs(png_ptr, info, res_x, res_y, unit_type); } #endif #if defined(PNG_READ_oFFs_SUPPORTED) void png_handle_oFFs(png_structp png_ptr, png_infop info, png_uint_32 length) { png_byte buf[9]; png_uint_32 offset_x, offset_y; int unit_type; if (length != 9) { png_warning(png_ptr, "Incorrect oFFs chunk length"); png_crc_skip(png_ptr, length); return; } png_crc_read(png_ptr, buf, 9); offset_x = png_get_uint_32(buf); offset_y = png_get_uint_32(buf + 4); unit_type = buf[8]; png_read_oFFs(png_ptr, info, offset_x, offset_y, unit_type); } #endif #if defined(PNG_READ_tIME_SUPPORTED) void png_handle_tIME(png_structp png_ptr, png_infop info, png_uint_32 length) { png_byte buf[7]; png_time mod_time; if (length != 7) { png_warning(png_ptr, "Incorrect tIME chunk length"); png_crc_skip(png_ptr, length); return; } png_crc_read(png_ptr, buf, 7); mod_time.second = buf[6]; mod_time.minute = buf[5]; mod_time.hour = buf[4]; mod_time.day = buf[3]; mod_time.month = buf[2]; mod_time.year = png_get_uint_16(buf); png_read_tIME(png_ptr, info, &mod_time); } #endif #if defined(PNG_READ_tEXt_SUPPORTED) /* note: this does not correctly handle chunks that are > 64K */ void png_handle_tEXt(png_structp png_ptr, png_infop info, png_uint_32 length) { png_charp key; png_charp text; key = (png_charp )png_large_malloc(png_ptr, length + 1); png_crc_read(png_ptr, (png_bytep )key, length); key[(png_size_t)length] = '\0'; for (text = key; *text; text++) /* empty loop */ ; if (text != key + (png_size_t)length) text++; png_read_tEXt(png_ptr, info, key, text, length - (text - key)); } #endif #if defined(PNG_READ_zTXt_SUPPORTED) /* note: this does not correctly handle chunks that are > 64K compressed */ void png_handle_zTXt(png_structp png_ptr, png_infop info, png_uint_32 length) { png_charp key; png_charp text; int ret; png_uint_32 text_size, key_size; key = png_large_malloc(png_ptr, length + 1); png_crc_read(png_ptr, (png_bytep )key, length); key[(png_size_t)length] = '\0'; for (text = key; *text; text++) /* empty loop */ ; /* zTXt can't have zero text */ if (text == key + (png_size_t)length) { png_warning(png_ptr, "Zero length zTXt chunk"); png_large_free(png_ptr, key); return; } text++; if (*text) /* check compression byte */ { png_large_free(png_ptr, key); return; } text++; png_ptr->zstream->next_in = (png_bytep )text; png_ptr->zstream->avail_in = (uInt)(length - (text - key)); png_ptr->zstream->next_out = png_ptr->zbuf; png_ptr->zstream->avail_out = (png_size_t)png_ptr->zbuf_size; key_size = text - key; text_size = 0; text = NULL; ret = Z_STREAM_END; while (png_ptr->zstream->avail_in) { ret = inflate(png_ptr->zstream, Z_PARTIAL_FLUSH); if (ret != Z_OK && ret != Z_STREAM_END) { if (png_ptr->zstream->msg) png_warning(png_ptr, png_ptr->zstream->msg); else png_warning(png_ptr, "zTXt decompression error"); inflateReset(png_ptr->zstream); png_ptr->zstream->avail_in = 0; png_large_free(png_ptr, key); png_large_free(png_ptr, text); return; } if (!png_ptr->zstream->avail_out || ret == Z_STREAM_END) { if (!text) { text = (png_charp)png_large_malloc(png_ptr, png_ptr->zbuf_size - png_ptr->zstream->avail_out + key_size + 1); png_memcpy(text + (png_size_t)key_size, png_ptr->zbuf, (png_size_t)(png_ptr->zbuf_size - png_ptr->zstream->avail_out)); png_memcpy(text, key, (png_size_t)key_size); text_size = key_size + (png_size_t)png_ptr->zbuf_size - png_ptr->zstream->avail_out; *(text + (png_size_t)text_size) = '\0'; } else { png_charp tmp; tmp = text; text = png_large_malloc(png_ptr, text_size + png_ptr->zbuf_size - png_ptr->zstream->avail_out + 1); png_memcpy(text, tmp, (png_size_t)text_size); png_large_free(png_ptr, tmp); png_memcpy(text + (png_size_t)text_size, png_ptr->zbuf, (png_size_t)(png_ptr->zbuf_size - png_ptr->zstream->avail_out)); text_size += png_ptr->zbuf_size - png_ptr->zstream->avail_out; *(text + (png_size_t)text_size) = '\0'; } if (ret != Z_STREAM_END) { png_ptr->zstream->next_out = png_ptr->zbuf; png_ptr->zstream->avail_out = (uInt)png_ptr->zbuf_size; } } else { break; } if (ret == Z_STREAM_END) break; } inflateReset(png_ptr->zstream); png_ptr->zstream->avail_in = 0; if (ret != Z_STREAM_END) { png_large_free(png_ptr, key); png_large_free(png_ptr, text); return; } png_large_free(png_ptr, key); key = text; text += (png_size_t)key_size; text_size -= key_size; png_read_zTXt(png_ptr, info, key, text, text_size, 0); } #endif /* Combines the row recently read in with the previous row. This routine takes care of alpha and transparency if requested. This routine also handles the two methods of progressive display of interlaced images, depending on the mask value. The mask value describes which pixels are to be combined with the row. The pattern always repeats every 8 pixels, so just 8 bits are needed. A one indicates the pixels is to be combined, a zero indicates the pixel is to be skipped. This is in addition to any alpha or transparency value associated with the pixel. If you want all pixels to be combined, pass 0xff (255) in mask. */ void png_combine_row(png_structp png_ptr, png_bytep row, int mask) { if (mask == 0xff) { png_memcpy(row, png_ptr->row_buf + 1, (png_size_t)((png_ptr->width * png_ptr->row_info.pixel_depth + 7) >> 3)); } else { switch (png_ptr->row_info.pixel_depth) { case 1: { png_bytep sp; png_bytep dp; int m; int shift; png_uint_32 i; int value; sp = png_ptr->row_buf + 1; dp = row; shift = 7; m = 0x80; for (i = 0; i < png_ptr->width; i++) { if (m & mask) { value = (*sp >> shift) & 0x1; *dp &= (png_byte)((0x7f7f >> (7 - shift)) & 0xff); *dp |= (png_byte)(value << shift); } if (shift == 0) { shift = 7; sp++; dp++; } else shift--; if (m == 1) m = 0x80; else m >>= 1; } break; } case 2: { png_bytep sp; png_bytep dp; int m; int shift; png_uint_32 i; int value; sp = png_ptr->row_buf + 1; dp = row; shift = 6; m = 0x80; for (i = 0; i < png_ptr->width; i++) { if (m & mask) { value = (*sp >> shift) & 0x3; *dp &= (png_byte)((0x3f3f >> (6 - shift)) & 0xff); *dp |= (png_byte)(value << shift); } if (shift == 0) { shift = 6; sp++; dp++; } else shift -= 2; if (m == 1) m = 0x80; else m >>= 1; } break; } case 4: { png_bytep sp; png_bytep dp; int m; int shift; png_uint_32 i; int value; sp = png_ptr->row_buf + 1; dp = row; shift = 4; m = 0x80; for (i = 0; i < png_ptr->width; i++) { if (m & mask) { value = (*sp >> shift) & 0xf; *dp &= (png_byte)((0xf0f >> (4 - shift)) & 0xff); *dp |= (png_byte)(value << shift); } if (shift == 0) { shift = 4; sp++; dp++; } else shift -= 4; if (m == 1) m = 0x80; else m >>= 1; } break; } default: { png_bytep sp; png_bytep dp; png_uint_32 i; int pixel_bytes, m; pixel_bytes = (png_ptr->row_info.pixel_depth >> 3); sp = png_ptr->row_buf + 1; dp = row; m = 0x80; for (i = 0; i < png_ptr->width; i++) { if (m & mask) { png_memcpy(dp, sp, pixel_bytes); } sp += pixel_bytes; dp += pixel_bytes; if (m == 1) m = 0x80; else m >>= 1; } break; } } } } #if defined(PNG_READ_INTERLACING_SUPPORTED) void png_do_read_interlace(png_row_infop row_info, png_bytep row, int pass) { if (row && row_info) { png_uint_32 final_width; final_width = row_info->width * png_pass_inc[pass]; switch (row_info->pixel_depth) { case 1: { png_bytep sp, dp; int sshift, dshift; png_byte v; png_uint_32 i; int j; sp = row + (png_size_t)((row_info->width - 1) >> 3); sshift = 7 - (int)((row_info->width + 7) & 7); dp = row + (png_size_t)((final_width - 1) >> 3); dshift = 7 - (int)((final_width + 7) & 7); for (i = row_info->width; i; i--) { v = (png_byte)((*sp >> sshift) & 0x1); for (j = 0; j < png_pass_inc[pass]; j++) { *dp &= (png_byte)((0x7f7f >> (7 - dshift)) & 0xff); *dp |= (png_byte)(v << dshift); if (dshift == 7) { dshift = 0; dp--; } else dshift++; } if (sshift == 7) { sshift = 0; sp--; } else sshift++; } break; } case 2: { png_bytep sp, dp; int sshift, dshift; png_byte v; png_uint_32 i, j; sp = row + (png_size_t)((row_info->width - 1) >> 2); sshift = (png_size_t)((3 - ((row_info->width + 3) & 3)) << 1); dp = row + (png_size_t)((final_width - 1) >> 2); dshift = (png_size_t)((3 - ((final_width + 3) & 3)) << 1); for (i = row_info->width; i; i--) { v = (png_byte)((*sp >> sshift) & 0x3); for (j = 0; j < png_pass_inc[pass]; j++) { *dp &= (png_byte)((0x3f3f >> (6 - dshift)) & 0xff); *dp |= (png_byte)(v << dshift); if (dshift == 6) { dshift = 0; dp--; } else dshift += 2; } if (sshift == 6) { sshift = 0; sp--; } else sshift += 2; } break; } case 4: { png_bytep sp, dp; int sshift, dshift; png_byte v; png_uint_32 i; int j; sp = row + (png_size_t)((row_info->width - 1) >> 1); sshift = (png_size_t)((1 - ((row_info->width + 1) & 1)) << 2); dp = row + (png_size_t)((final_width - 1) >> 1); dshift = (png_size_t)((1 - ((final_width + 1) & 1)) << 2); for (i = row_info->width; i; i--) { v = (png_byte)((*sp >> sshift) & 0xf); for (j = 0; j < png_pass_inc[pass]; j++) { *dp &= (png_byte)((0xf0f >> (4 - dshift)) & 0xff); *dp |= (png_byte)(v << dshift); if (dshift == 4) { dshift = 0; dp--; } else dshift = 4; } if (sshift == 4) { sshift = 0; sp--; } else sshift = 4; } break; } default: { png_bytep sp, dp; png_byte v[8]; png_uint_32 i; int j; int pixel_bytes; pixel_bytes = (row_info->pixel_depth >> 3); sp = row + (png_size_t)((row_info->width - 1) * pixel_bytes); dp = row + (png_size_t)((final_width - 1) * pixel_bytes); for (i = row_info->width; i; i--) { png_memcpy(v, sp, pixel_bytes); for (j = 0; j < png_pass_inc[pass]; j++) { png_memcpy(dp, v, pixel_bytes); dp -= pixel_bytes; } sp -= pixel_bytes; } break; } } row_info->width = final_width; row_info->rowbytes = ((final_width * (png_uint_32)row_info->pixel_depth + 7) >> 3); } } #endif void png_read_filter_row(png_row_infop row_info, png_bytep row, png_bytep prev_row, int filter) { switch (filter) { case 0: break; case 1: { png_uint_32 i; int bpp; png_bytep rp; png_bytep lp; bpp = (row_info->pixel_depth + 7) / 8; for (i = (png_uint_32)bpp, rp = row + bpp, lp = row; i < row_info->rowbytes; i++, rp++, lp++) { *rp = (png_byte)(((int)(*rp) + (int)(*lp)) & 0xff); } break; } case 2: { png_uint_32 i; png_bytep rp; png_bytep pp; for (i = 0, rp = row, pp = prev_row; i < row_info->rowbytes; i++, rp++, pp++) { *rp = (png_byte)(((int)(*rp) + (int)(*pp)) & 0xff); } break; } case 3: { png_uint_32 i; int bpp; png_bytep rp; png_bytep pp; png_bytep lp; bpp = (row_info->pixel_depth + 7) / 8; for (i = 0, rp = row, pp = prev_row; i < (png_uint_32)bpp; i++, rp++, pp++) { *rp = (png_byte)(((int)(*rp) + ((int)(*pp) / 2)) & 0xff); } for (lp = row; i < row_info->rowbytes; i++, rp++, lp++, pp++) { *rp = (png_byte)(((int)(*rp) + (int)(*pp + *lp) / 2) & 0xff); } break; } case 4: { int bpp; png_uint_32 i; png_bytep rp; png_bytep pp; png_bytep lp; png_bytep cp; bpp = (row_info->pixel_depth + 7) / 8; for (i = 0, rp = row, pp = prev_row, lp = row - bpp, cp = prev_row - bpp; i < row_info->rowbytes; i++, rp++, pp++, lp++, cp++) { int a, b, c, pa, pb, pc, p; b = *pp; if (i >= (png_uint_32)bpp) { c = *cp; a = *lp; } else { a = c = 0; } p = a + b - c; pa = abs(p - a); pb = abs(p - b); pc = abs(p - c); if (pa <= pb && pa <= pc) p = a; else if (pb <= pc) p = b; else p = c; *rp = (png_byte)(((int)(*rp) + p) & 0xff); } break; } default: break; } } void png_read_finish_row(png_structp png_ptr) { png_ptr->row_number++; if (png_ptr->row_number < png_ptr->num_rows) return; if (png_ptr->interlaced) { png_ptr->row_number = 0; png_memset(png_ptr->prev_row, 0, (png_size_t)png_ptr->rowbytes + 1); do { png_ptr->pass++; if (png_ptr->pass >= 7) break; png_ptr->iwidth = (png_ptr->width + png_pass_inc[png_ptr->pass] - 1 - png_pass_start[png_ptr->pass]) / png_pass_inc[png_ptr->pass]; png_ptr->irowbytes = ((png_ptr->iwidth * png_ptr->pixel_depth + 7) >> 3) + 1; if (!(png_ptr->transformations & PNG_INTERLACE)) { png_ptr->num_rows = (png_ptr->height + png_pass_yinc[png_ptr->pass] - 1 - png_pass_ystart[png_ptr->pass]) / png_pass_yinc[png_ptr->pass]; if (!(png_ptr->num_rows)) continue; } if (png_ptr->transformations & PNG_INTERLACE) break; } while (png_ptr->iwidth == 0); if (png_ptr->pass < 7) return; } if (!png_ptr->zlib_finished) { char extra; int ret; png_ptr->zstream->next_out = (Byte *)&extra; png_ptr->zstream->avail_out = (uInt)1; do { if (!(png_ptr->zstream->avail_in)) { while (!png_ptr->idat_size) { png_byte buf[4]; png_uint_32 crc; png_read_data(png_ptr, buf, 4); crc = png_get_uint_32(buf); if (((crc ^ 0xffffffffL) & 0xffffffffL) != (png_ptr->crc & 0xffffffffL)) png_error(png_ptr, "Bad CRC value"); png_read_data(png_ptr, buf, 4); png_ptr->idat_size = png_get_uint_32(buf); png_reset_crc(png_ptr); png_crc_read(png_ptr, buf, 4); if (png_memcmp(buf, png_IDAT, 4)) png_error(png_ptr, "Not enough image data"); } png_ptr->zstream->avail_in = (uInt)png_ptr->zbuf_size; png_ptr->zstream->next_in = png_ptr->zbuf; if (png_ptr->zbuf_size > png_ptr->idat_size) png_ptr->zstream->avail_in = (uInt)png_ptr->idat_size; png_crc_read(png_ptr, png_ptr->zbuf, png_ptr->zstream->avail_in); png_ptr->idat_size -= png_ptr->zstream->avail_in; } ret = inflate(png_ptr->zstream, Z_PARTIAL_FLUSH); if (ret == Z_STREAM_END) { if (!(png_ptr->zstream->avail_out) || png_ptr->zstream->avail_in || png_ptr->idat_size) png_error(png_ptr, "Extra compressed data"); png_ptr->mode = PNG_AT_LAST_IDAT; break; } if (ret != Z_OK) png_error(png_ptr, "Compression Error"); if (!(png_ptr->zstream->avail_out)) png_error(png_ptr, "Extra compressed data"); } while (1); png_ptr->zstream->avail_out = 0; } if (png_ptr->idat_size || png_ptr->zstream->avail_in) png_error(png_ptr, "Extra compression data"); inflateReset(png_ptr->zstream); png_ptr->mode = PNG_AT_LAST_IDAT; } void png_read_start_row(png_structp png_ptr) { int max_pixel_depth; png_uint_32 rowbytes; png_ptr->zstream->avail_in = 0; png_init_read_transformations(png_ptr); if (png_ptr->interlaced) { if (!(png_ptr->transformations & PNG_INTERLACE)) png_ptr->num_rows = (png_ptr->height + png_pass_yinc[0] - 1 - png_pass_ystart[0]) / png_pass_yinc[0]; else png_ptr->num_rows = png_ptr->height; png_ptr->iwidth = (png_ptr->width + png_pass_inc[png_ptr->pass] - 1 - png_pass_start[png_ptr->pass]) / png_pass_inc[png_ptr->pass]; png_ptr->irowbytes = ((png_ptr->iwidth * png_ptr->pixel_depth + 7) >> 3) + 1; } else { png_ptr->num_rows = png_ptr->height; png_ptr->iwidth = png_ptr->width; png_ptr->irowbytes = png_ptr->rowbytes + 1; } max_pixel_depth = png_ptr->pixel_depth; #if defined(PNG_READ_PACK_SUPPORTED) if ((png_ptr->transformations & PNG_PACK) && png_ptr->bit_depth < 8) { max_pixel_depth = 8; } #endif #if defined(PNG_READ_EXPAND_SUPPORTED) || defined(PNG_READ_PACK_SUPPORTED) if (png_ptr->transformations & (PNG_EXPAND | PNG_PACK)) { if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) { if (png_ptr->num_trans) max_pixel_depth = 32; else max_pixel_depth = 24; } else if (png_ptr->color_type == PNG_COLOR_TYPE_GRAY) { if (max_pixel_depth < 8) max_pixel_depth = 8; if (png_ptr->num_trans) max_pixel_depth *= 2; } else if (png_ptr->color_type == PNG_COLOR_TYPE_RGB) { if (png_ptr->num_trans) { max_pixel_depth *= 4; max_pixel_depth /= 3; } } } #endif #if defined(PNG_READ_FILLER_SUPPORTED) if (png_ptr->transformations & (PNG_FILLER)) { if (max_pixel_depth < 32) max_pixel_depth = 32; } #endif #if defined(PNG_READ_GRAY_TO_RGB_SUPPORTED) if (png_ptr->transformations & PNG_GRAY_TO_RGB) { if ((png_ptr->num_trans && (png_ptr->transformations & PNG_EXPAND)) || png_ptr->color_type == PNG_COLOR_TYPE_GRAY_ALPHA) { if (max_pixel_depth <= 16) max_pixel_depth = 32; else if (max_pixel_depth <= 32) max_pixel_depth = 64; } else { if (max_pixel_depth <= 8) max_pixel_depth = 24; else if (max_pixel_depth <= 16) max_pixel_depth = 48; } } #endif /* align the width on the next larger 8 pixels. Mainly used for interlacing */ rowbytes = ((png_ptr->width + 7) & ~((png_uint_32)7)); /* calculate the maximum bytes needed, adding a byte and a pixel for safety sake */ rowbytes = ((rowbytes * (png_uint_32)max_pixel_depth + 7) >> 3) + 1 + ((max_pixel_depth + 7) >> 3); #ifdef PNG_MAX_MALLOC_64K if (rowbytes > 65536L) png_error(png_ptr, "This image requires a row greater then 64KB"); #endif png_ptr->row_buf = (png_bytep )png_large_malloc(png_ptr, rowbytes); #ifdef PNG_MAX_MALLOC_64K if (png_ptr->rowbytes + 1 > 65536L) png_error(png_ptr, "This image requires a row greater then 64KB"); #endif png_ptr->prev_row = png_large_malloc(png_ptr, png_ptr->rowbytes + 1); png_memset(png_ptr->prev_row, 0, (png_size_t)png_ptr->rowbytes + 1); png_ptr->row_init = 1; }