/* pngrtran.c - transforms the data in a row for PNG readers * * Last changed in libpng 1.4.0 [March 21, 2009] * For conditions of distribution and use, see copyright notice in png.h * Copyright (c) 1998-2009 Glenn Randers-Pehrson * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) * * This file contains functions optionally called by an application * in order to tell libpng how to handle data when reading a PNG. * Transformations that are used in both reading and writing are * in pngtrans.c. */ #include "png.h" #if defined(PNG_READ_SUPPORTED) #include "pngpriv.h" /* Set the action on getting a CRC error for an ancillary or critical chunk. */ void PNGAPI png_set_crc_action(png_structp png_ptr, int crit_action, int ancil_action) { png_debug(1, "in png_set_crc_action"); /* Tell libpng how we react to CRC errors in critical chunks */ if (png_ptr == NULL) return; switch (crit_action) { case PNG_CRC_NO_CHANGE: /* leave setting as is */ break; case PNG_CRC_WARN_USE: /* warn/use data */ png_ptr->flags &= ~PNG_FLAG_CRC_CRITICAL_MASK; png_ptr->flags |= PNG_FLAG_CRC_CRITICAL_USE; break; case PNG_CRC_QUIET_USE: /* quiet/use data */ png_ptr->flags &= ~PNG_FLAG_CRC_CRITICAL_MASK; png_ptr->flags |= PNG_FLAG_CRC_CRITICAL_USE | PNG_FLAG_CRC_CRITICAL_IGNORE; break; case PNG_CRC_WARN_DISCARD: /* not a valid action for critical data */ png_warning(png_ptr, "Can't discard critical data on CRC error"); case PNG_CRC_ERROR_QUIT: /* error/quit */ case PNG_CRC_DEFAULT: default: png_ptr->flags &= ~PNG_FLAG_CRC_CRITICAL_MASK; break; } switch (ancil_action) { case PNG_CRC_NO_CHANGE: /* leave setting as is */ break; case PNG_CRC_WARN_USE: /* warn/use data */ png_ptr->flags &= ~PNG_FLAG_CRC_ANCILLARY_MASK; png_ptr->flags |= PNG_FLAG_CRC_ANCILLARY_USE; break; case PNG_CRC_QUIET_USE: /* quiet/use data */ png_ptr->flags &= ~PNG_FLAG_CRC_ANCILLARY_MASK; png_ptr->flags |= PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN; break; case PNG_CRC_ERROR_QUIT: /* error/quit */ png_ptr->flags &= ~PNG_FLAG_CRC_ANCILLARY_MASK; png_ptr->flags |= PNG_FLAG_CRC_ANCILLARY_NOWARN; break; case PNG_CRC_WARN_DISCARD: /* warn/discard data */ case PNG_CRC_DEFAULT: default: png_ptr->flags &= ~PNG_FLAG_CRC_ANCILLARY_MASK; break; } } #if defined(PNG_READ_BACKGROUND_SUPPORTED) && \ defined(PNG_FLOATING_POINT_SUPPORTED) /* handle alpha and tRNS via a background color */ void PNGAPI png_set_background(png_structp png_ptr, png_color_16p background_color, int background_gamma_code, int need_expand, double background_gamma) { png_debug(1, "in png_set_background"); if (png_ptr == NULL) return; if (background_gamma_code == PNG_BACKGROUND_GAMMA_UNKNOWN) { png_warning(png_ptr, "Application must supply a known background gamma"); return; } png_ptr->transformations |= PNG_BACKGROUND; png_memcpy(&(png_ptr->background), background_color, png_sizeof(png_color_16)); png_ptr->background_gamma = (float)background_gamma; png_ptr->background_gamma_type = (png_byte)(background_gamma_code); png_ptr->transformations |= (need_expand ? PNG_BACKGROUND_EXPAND : 0); } #endif #if defined(PNG_READ_16_TO_8_SUPPORTED) /* strip 16 bit depth files to 8 bit depth */ void PNGAPI png_set_strip_16(png_structp png_ptr) { png_debug(1, "in png_set_strip_16"); if (png_ptr == NULL) return; png_ptr->transformations |= PNG_16_TO_8; } #endif #if defined(PNG_READ_STRIP_ALPHA_SUPPORTED) void PNGAPI png_set_strip_alpha(png_structp png_ptr) { png_debug(1, "in png_set_strip_alpha"); if (png_ptr == NULL) return; png_ptr->flags |= PNG_FLAG_STRIP_ALPHA; } #endif #if defined(PNG_READ_PREMULTIPLY_ALPHA_SUPPORTED) void PNGAPI png_set_premultiply_alpha(png_structp png_ptr) { png_debug(1, "in png_set_premultiply_alpha"); if(png_ptr == NULL) return; png_ptr->transformations |= (PNG_PREMULTIPLY_ALPHA | PNG_EXPAND_tRNS); png_ptr->transformations |= PNG_EXPAND; /* This shouldn't be necessary */ png_ptr->flags &= ~PNG_FLAG_ROW_INIT; } #endif #if defined(PNG_READ_DITHER_SUPPORTED) /* Dither file to 8 bit. Supply a palette, the current number * of elements in the palette, the maximum number of elements * allowed, and a histogram if possible. If the current number * of colors is greater then the maximum number, the palette will be * modified to fit in the maximum number. "full_dither" indicates * whether we need a dithering cube set up for RGB images, or if we * simply are reducing the number of colors in a paletted image. */ typedef struct png_dsort_struct { struct png_dsort_struct FAR * next; png_byte left; png_byte right; } png_dsort; typedef png_dsort FAR * png_dsortp; typedef png_dsort FAR * FAR * png_dsortpp; void PNGAPI png_set_dither(png_structp png_ptr, png_colorp palette, int num_palette, int maximum_colors, png_uint_16p histogram, int full_dither) { png_debug(1, "in png_set_dither"); if (png_ptr == NULL) return; png_ptr->transformations |= PNG_DITHER; if (!full_dither) { int i; png_ptr->dither_index = (png_bytep)png_malloc(png_ptr, (png_uint_32)(num_palette * png_sizeof(png_byte))); for (i = 0; i < num_palette; i++) png_ptr->dither_index[i] = (png_byte)i; } if (num_palette > maximum_colors) { if (histogram != NULL) { /* This is easy enough, just throw out the least used colors. Perhaps not the best solution, but good enough. */ int i; /* initialize an array to sort colors */ png_ptr->dither_sort = (png_bytep)png_malloc(png_ptr, (png_uint_32)(num_palette * png_sizeof(png_byte))); /* initialize the dither_sort array */ for (i = 0; i < num_palette; i++) png_ptr->dither_sort[i] = (png_byte)i; /* Find the least used palette entries by starting a bubble sort, and running it until we have sorted out enough colors. Note that we don't care about sorting all the colors, just finding which are least used. */ for (i = num_palette - 1; i >= maximum_colors; i--) { int done; /* to stop early if the list is pre-sorted */ int j; done = 1; for (j = 0; j < i; j++) { if (histogram[png_ptr->dither_sort[j]] < histogram[png_ptr->dither_sort[j + 1]]) { png_byte t; t = png_ptr->dither_sort[j]; png_ptr->dither_sort[j] = png_ptr->dither_sort[j + 1]; png_ptr->dither_sort[j + 1] = t; done = 0; } } if (done) break; } /* swap the palette around, and set up a table, if necessary */ if (full_dither) { int j = num_palette; /* put all the useful colors within the max, but don't move the others */ for (i = 0; i < maximum_colors; i++) { if ((int)png_ptr->dither_sort[i] >= maximum_colors) { do j--; while ((int)png_ptr->dither_sort[j] >= maximum_colors); palette[i] = palette[j]; } } } else { int j = num_palette; /* move all the used colors inside the max limit, and develop a translation table */ for (i = 0; i < maximum_colors; i++) { /* only move the colors we need to */ if ((int)png_ptr->dither_sort[i] >= maximum_colors) { png_color tmp_color; do j--; while ((int)png_ptr->dither_sort[j] >= maximum_colors); tmp_color = palette[j]; palette[j] = palette[i]; palette[i] = tmp_color; /* indicate where the color went */ png_ptr->dither_index[j] = (png_byte)i; png_ptr->dither_index[i] = (png_byte)j; } } /* find closest color for those colors we are not using */ for (i = 0; i < num_palette; i++) { if ((int)png_ptr->dither_index[i] >= maximum_colors) { int min_d, k, min_k, d_index; /* find the closest color to one we threw out */ d_index = png_ptr->dither_index[i]; min_d = PNG_COLOR_DIST(palette[d_index], palette[0]); for (k = 1, min_k = 0; k < maximum_colors; k++) { int d; d = PNG_COLOR_DIST(palette[d_index], palette[k]); if (d < min_d) { min_d = d; min_k = k; } } /* point to closest color */ png_ptr->dither_index[i] = (png_byte)min_k; } } } png_free(png_ptr, png_ptr->dither_sort); png_ptr->dither_sort = NULL; } else { /* This is much harder to do simply (and quickly). Perhaps we need to go through a median cut routine, but those don't always behave themselves with only a few colors as input. So we will just find the closest two colors, and throw out one of them (chosen somewhat randomly). [We don't understand this at all, so if someone wants to work on improving it, be our guest - AED, GRP] */ int i; int max_d; int num_new_palette; png_dsortp t; png_dsortpp hash; t = NULL; /* initialize palette index arrays */ png_ptr->index_to_palette = (png_bytep)png_malloc(png_ptr, (png_uint_32)(num_palette * png_sizeof(png_byte))); png_ptr->palette_to_index = (png_bytep)png_malloc(png_ptr, (png_uint_32)(num_palette * png_sizeof(png_byte))); /* initialize the sort array */ for (i = 0; i < num_palette; i++) { png_ptr->index_to_palette[i] = (png_byte)i; png_ptr->palette_to_index[i] = (png_byte)i; } #ifdef PNG_CALLOC_SUPPORTED hash = (png_dsortpp)png_calloc(png_ptr, (png_uint_32)(769 * png_sizeof(png_dsortp))); #else hash = (png_dsortpp)png_malloc(png_ptr, (png_uint_32)(769 * png_sizeof(png_dsortp))); png_memset(hash, 0, 769 * png_sizeof(png_dsortp)); #endif num_new_palette = num_palette; /* initial wild guess at how far apart the farthest pixel pair we will be eliminating will be. Larger numbers mean more areas will be allocated, Smaller numbers run the risk of not saving enough data, and having to do this all over again. I have not done extensive checking on this number. */ max_d = 96; while (num_new_palette > maximum_colors) { for (i = 0; i < num_new_palette - 1; i++) { int j; for (j = i + 1; j < num_new_palette; j++) { int d; d = PNG_COLOR_DIST(palette[i], palette[j]); if (d <= max_d) { t = (png_dsortp)png_malloc_warn(png_ptr, (png_uint_32)(png_sizeof(png_dsort))); if (t == NULL) break; t->next = hash[d]; t->left = (png_byte)i; t->right = (png_byte)j; hash[d] = t; } } if (t == NULL) break; } if (t != NULL) for (i = 0; i <= max_d; i++) { if (hash[i] != NULL) { png_dsortp p; for (p = hash[i]; p; p = p->next) { if ((int)png_ptr->index_to_palette[p->left] < num_new_palette && (int)png_ptr->index_to_palette[p->right] < num_new_palette) { int j, next_j; if (num_new_palette & 0x01) { j = p->left; next_j = p->right; } else { j = p->right; next_j = p->left; } num_new_palette--; palette[png_ptr->index_to_palette[j]] = palette[num_new_palette]; if (!full_dither) { int k; for (k = 0; k < num_palette; k++) { if (png_ptr->dither_index[k] == png_ptr->index_to_palette[j]) png_ptr->dither_index[k] = png_ptr->index_to_palette[next_j]; if ((int)png_ptr->dither_index[k] == num_new_palette) png_ptr->dither_index[k] = png_ptr->index_to_palette[j]; } } png_ptr->index_to_palette[png_ptr->palette_to_index [num_new_palette]] = png_ptr->index_to_palette[j]; png_ptr->palette_to_index[png_ptr->index_to_palette[j]] = png_ptr->palette_to_index[num_new_palette]; png_ptr->index_to_palette[j] = (png_byte)num_new_palette; png_ptr->palette_to_index[num_new_palette] = (png_byte)j; } if (num_new_palette <= maximum_colors) break; } if (num_new_palette <= maximum_colors) break; } } for (i = 0; i < 769; i++) { if (hash[i] != NULL) { png_dsortp p = hash[i]; while (p) { t = p->next; png_free(png_ptr, p); p = t; } } hash[i] = 0; } max_d += 96; } png_free(png_ptr, hash); png_free(png_ptr, png_ptr->palette_to_index); png_free(png_ptr, png_ptr->index_to_palette); png_ptr->palette_to_index = NULL; png_ptr->index_to_palette = NULL; } num_palette = maximum_colors; } if (png_ptr->palette == NULL) { png_ptr->palette = palette; } png_ptr->num_palette = (png_uint_16)num_palette; if (full_dither) { int i; png_bytep distance; int total_bits = PNG_DITHER_RED_BITS + PNG_DITHER_GREEN_BITS + PNG_DITHER_BLUE_BITS; int num_red = (1 << PNG_DITHER_RED_BITS); int num_green = (1 << PNG_DITHER_GREEN_BITS); int num_blue = (1 << PNG_DITHER_BLUE_BITS); png_size_t num_entries = ((png_size_t)1 << total_bits); #ifdef PNG_CALLOC_SUPPORTED png_ptr->palette_lookup = (png_bytep )png_calloc(png_ptr, (png_uint_32)(num_entries * png_sizeof(png_byte))); #else png_ptr->palette_lookup = (png_bytep )png_malloc(png_ptr, (png_uint_32)(num_entries * png_sizeof(png_byte))); png_memset(png_ptr->palette_lookup, 0, num_entries * png_sizeof(png_byte)); #endif distance = (png_bytep)png_malloc(png_ptr, (png_uint_32)(num_entries * png_sizeof(png_byte))); png_memset(distance, 0xff, num_entries * png_sizeof(png_byte)); for (i = 0; i < num_palette; i++) { int ir, ig, ib; int r = (palette[i].red >> (8 - PNG_DITHER_RED_BITS)); int g = (palette[i].green >> (8 - PNG_DITHER_GREEN_BITS)); int b = (palette[i].blue >> (8 - PNG_DITHER_BLUE_BITS)); for (ir = 0; ir < num_red; ir++) { /* int dr = abs(ir - r); */ int dr = ((ir > r) ? ir - r : r - ir); int index_r = (ir << (PNG_DITHER_BLUE_BITS + PNG_DITHER_GREEN_BITS)); for (ig = 0; ig < num_green; ig++) { /* int dg = abs(ig - g); */ int dg = ((ig > g) ? ig - g : g - ig); int dt = dr + dg; int dm = ((dr > dg) ? dr : dg); int index_g = index_r | (ig << PNG_DITHER_BLUE_BITS); for (ib = 0; ib < num_blue; ib++) { int d_index = index_g | ib; /* int db = abs(ib - b); */ int db = ((ib > b) ? ib - b : b - ib); int dmax = ((dm > db) ? dm : db); int d = dmax + dt + db; if (d < (int)distance[d_index]) { distance[d_index] = (png_byte)d; png_ptr->palette_lookup[d_index] = (png_byte)i; } } } } } png_free(png_ptr, distance); } } #endif #if defined(PNG_READ_GAMMA_SUPPORTED) && defined(PNG_FLOATING_POINT_SUPPORTED) /* Transform the image from the file_gamma to the screen_gamma. We * only do transformations on images where the file_gamma and screen_gamma * are not close reciprocals, otherwise it slows things down slightly, and * also needlessly introduces small errors. * * We will turn off gamma transformation later if no semitransparent entries * are present in the tRNS array for palette images. We can't do it here * because we don't necessarily have the tRNS chunk yet. */ void PNGAPI png_set_gamma(png_structp png_ptr, double scrn_gamma, double file_gamma) { png_debug(1, "in png_set_gamma"); if (png_ptr == NULL) return; if ((fabs(scrn_gamma * file_gamma - 1.0) > PNG_GAMMA_THRESHOLD) || (png_ptr->color_type & PNG_COLOR_MASK_ALPHA) || (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)) png_ptr->transformations |= PNG_GAMMA; png_ptr->gamma = (float)file_gamma; png_ptr->screen_gamma = (float)scrn_gamma; } #endif #if defined(PNG_READ_EXPAND_SUPPORTED) /* Expand paletted images to RGB, expand grayscale images of * less than 8-bit depth to 8-bit depth, and expand tRNS chunks * to alpha channels. */ void PNGAPI png_set_expand(png_structp png_ptr) { png_debug(1, "in png_set_expand"); if (png_ptr == NULL) return; png_ptr->transformations |= (PNG_EXPAND | PNG_EXPAND_tRNS); png_ptr->flags &= ~PNG_FLAG_ROW_INIT; } /* GRR 19990627: the following three functions currently are identical * to png_set_expand(). However, it is entirely reasonable that someone * might wish to expand an indexed image to RGB but *not* expand a single, * fully transparent palette entry to a full alpha channel--perhaps instead * convert tRNS to the grayscale/RGB format (16-bit RGB value), or replace * the transparent color with a particular RGB value, or drop tRNS entirely. * IOW, a future version of the library may make the transformations flag * a bit more fine-grained, with separate bits for each of these three * functions. * * More to the point, these functions make it obvious what libpng will be * doing, whereas "expand" can (and does) mean any number of things. * * GRP 20060307: In libpng-1.4.0, png_set_gray_1_2_4_to_8() was modified * to expand only the sample depth but not to expand the tRNS to alpha. */ /* Expand paletted images to RGB. */ void PNGAPI png_set_palette_to_rgb(png_structp png_ptr) { png_debug(1, "in png_set_palette_to_rgb"); if (png_ptr == NULL) return; png_ptr->transformations |= (PNG_EXPAND | PNG_EXPAND_tRNS); png_ptr->flags &= ~PNG_FLAG_ROW_INIT; } /* Expand grayscale images of less than 8-bit depth to 8 bits. */ void PNGAPI png_set_expand_gray_1_2_4_to_8(png_structp png_ptr) { png_debug(1, "in png_set_expand_gray_1_2_4_to_8"); if (png_ptr == NULL) return; png_ptr->transformations |= PNG_EXPAND; png_ptr->flags &= ~PNG_FLAG_ROW_INIT; } /* Expand tRNS chunks to alpha channels. */ void PNGAPI png_set_tRNS_to_alpha(png_structp png_ptr) { png_debug(1, "in png_set_tRNS_to_alpha"); png_ptr->transformations |= (PNG_EXPAND | PNG_EXPAND_tRNS); png_ptr->flags &= ~PNG_FLAG_ROW_INIT; } #endif /* defined(PNG_READ_EXPAND_SUPPORTED) */ #if defined(PNG_READ_GRAY_TO_RGB_SUPPORTED) void PNGAPI png_set_gray_to_rgb(png_structp png_ptr) { png_debug(1, "in png_set_gray_to_rgb"); png_ptr->transformations |= PNG_GRAY_TO_RGB; png_ptr->flags &= ~PNG_FLAG_ROW_INIT; } #endif #if defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) #if defined(PNG_FLOATING_POINT_SUPPORTED) /* Convert a RGB image to a grayscale of the same width. This allows us, * for example, to convert a 24 bpp RGB image into an 8 bpp grayscale image. */ void PNGAPI png_set_rgb_to_gray(png_structp png_ptr, int error_action, double red, double green) { int red_fixed = (int)((float)red*100000.0 + 0.5); int green_fixed = (int)((float)green*100000.0 + 0.5); if (png_ptr == NULL) return; png_set_rgb_to_gray_fixed(png_ptr, error_action, red_fixed, green_fixed); } #endif void PNGAPI png_set_rgb_to_gray_fixed(png_structp png_ptr, int error_action, png_fixed_point red, png_fixed_point green) { png_debug(1, "in png_set_rgb_to_gray"); if (png_ptr == NULL) return; switch(error_action) { case 1: png_ptr->transformations |= PNG_RGB_TO_GRAY; break; case 2: png_ptr->transformations |= PNG_RGB_TO_GRAY_WARN; break; case 3: png_ptr->transformations |= PNG_RGB_TO_GRAY_ERR; } if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) #if defined(PNG_READ_EXPAND_SUPPORTED) png_ptr->transformations |= PNG_EXPAND; #else { png_warning(png_ptr, "Cannot do RGB_TO_GRAY without EXPAND_SUPPORTED"); png_ptr->transformations &= ~PNG_RGB_TO_GRAY; } #endif { png_uint_16 red_int, green_int; if (red < 0 || green < 0) { red_int = 6968; /* .212671 * 32768 + .5 */ green_int = 23434; /* .715160 * 32768 + .5 */ } else if (red + green < 100000L) { red_int = (png_uint_16)(((png_uint_32)red*32768L)/100000L); green_int = (png_uint_16)(((png_uint_32)green*32768L)/100000L); } else { png_warning(png_ptr, "ignoring out of range rgb_to_gray coefficients"); red_int = 6968; green_int = 23434; } png_ptr->rgb_to_gray_red_coeff = red_int; png_ptr->rgb_to_gray_green_coeff = green_int; png_ptr->rgb_to_gray_blue_coeff = (png_uint_16)(32768 - red_int - green_int); } } #endif #if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) || \ defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED) || \ defined(PNG_LEGACY_SUPPORTED) void PNGAPI png_set_read_user_transform_fn(png_structp png_ptr, png_user_transform_ptr read_user_transform_fn) { png_debug(1, "in png_set_read_user_transform_fn"); if (png_ptr == NULL) return; #if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) png_ptr->transformations |= PNG_USER_TRANSFORM; png_ptr->read_user_transform_fn = read_user_transform_fn; #endif #ifdef PNG_LEGACY_SUPPORTED if (read_user_transform_fn) png_warning(png_ptr, "This version of libpng does not support user transforms"); #endif } #endif /* Initialize everything needed for the read. This includes modifying * the palette. */ void /* PRIVATE */ png_init_read_transformations(png_structp png_ptr) { png_debug(1, "in png_init_read_transformations"); { #if defined(PNG_READ_BACKGROUND_SUPPORTED) || defined(PNG_READ_SHIFT_SUPPORTED) \ || defined(PNG_READ_GAMMA_SUPPORTED) int color_type = png_ptr->color_type; #endif #if defined(PNG_READ_EXPAND_SUPPORTED) && defined(PNG_READ_BACKGROUND_SUPPORTED) #if defined(PNG_READ_GRAY_TO_RGB_SUPPORTED) /* Detect gray background and attempt to enable optimization * for gray --> RGB case */ /* Note: if PNG_BACKGROUND_EXPAND is set and color_type is either RGB or * RGB_ALPHA (in which case need_expand is superfluous anyway), the * background color might actually be gray yet not be flagged as such. * This is not a problem for the current code, which uses * PNG_BACKGROUND_IS_GRAY only to decide when to do the * png_do_gray_to_rgb() transformation. */ if ((png_ptr->transformations & PNG_BACKGROUND_EXPAND) && !(color_type & PNG_COLOR_MASK_COLOR)) { png_ptr->mode |= PNG_BACKGROUND_IS_GRAY; } else if ((png_ptr->transformations & PNG_BACKGROUND) && !(png_ptr->transformations & PNG_BACKGROUND_EXPAND) && (png_ptr->transformations & PNG_GRAY_TO_RGB) && png_ptr->background.red == png_ptr->background.green && png_ptr->background.red == png_ptr->background.blue) { png_ptr->mode |= PNG_BACKGROUND_IS_GRAY; png_ptr->background.gray = png_ptr->background.red; } #endif if ((png_ptr->transformations & PNG_BACKGROUND_EXPAND) && (png_ptr->transformations & PNG_EXPAND)) { if (!(color_type & PNG_COLOR_MASK_COLOR)) /* i.e., GRAY or GRAY_ALPHA */ { /* expand background and tRNS chunks */ switch (png_ptr->bit_depth) { case 1: png_ptr->background.gray *= (png_uint_16)0xff; png_ptr->background.red = png_ptr->background.green = png_ptr->background.blue = png_ptr->background.gray; if (!(png_ptr->transformations & PNG_EXPAND_tRNS)) { png_ptr->trans_color.gray *= (png_uint_16)0xff; png_ptr->trans_color.red = png_ptr->trans_color.green = png_ptr->trans_color.blue = png_ptr->trans_color.gray; } break; case 2: png_ptr->background.gray *= (png_uint_16)0x55; png_ptr->background.red = png_ptr->background.green = png_ptr->background.blue = png_ptr->background.gray; if (!(png_ptr->transformations & PNG_EXPAND_tRNS)) { png_ptr->trans_color.gray *= (png_uint_16)0x55; png_ptr->trans_color.red = png_ptr->trans_color.green = png_ptr->trans_color.blue = png_ptr->trans_color.gray; } break; case 4: png_ptr->background.gray *= (png_uint_16)0x11; png_ptr->background.red = png_ptr->background.green = png_ptr->background.blue = png_ptr->background.gray; if (!(png_ptr->transformations & PNG_EXPAND_tRNS)) { png_ptr->trans_color.gray *= (png_uint_16)0x11; png_ptr->trans_color.red = png_ptr->trans_color.green = png_ptr->trans_color.blue = png_ptr->trans_color.gray; } break; case 8: case 16: png_ptr->background.red = png_ptr->background.green = png_ptr->background.blue = png_ptr->background.gray; break; } } else if (color_type == PNG_COLOR_TYPE_PALETTE) { png_ptr->background.red = png_ptr->palette[png_ptr->background.index].red; png_ptr->background.green = png_ptr->palette[png_ptr->background.index].green; png_ptr->background.blue = png_ptr->palette[png_ptr->background.index].blue; #if defined(PNG_READ_INVERT_ALPHA_SUPPORTED) if (png_ptr->transformations & PNG_INVERT_ALPHA) { #if defined(PNG_READ_EXPAND_SUPPORTED) if (!(png_ptr->transformations & PNG_EXPAND_tRNS)) #endif { /* invert the alpha channel (in tRNS) unless the pixels are going to be expanded, in which case leave it for later */ int i, istop; istop=(int)png_ptr->num_trans; for (i=0; itrans[i] = (png_byte)(255 - png_ptr->trans[i]); } } #endif } } #endif #if defined(PNG_READ_BACKGROUND_SUPPORTED) && defined(PNG_READ_GAMMA_SUPPORTED) png_ptr->background_1 = png_ptr->background; #endif #if defined(PNG_READ_GAMMA_SUPPORTED) && defined(PNG_FLOATING_POINT_SUPPORTED) if ((color_type == PNG_COLOR_TYPE_PALETTE && png_ptr->num_trans != 0) && (fabs(png_ptr->screen_gamma * png_ptr->gamma - 1.0) < PNG_GAMMA_THRESHOLD)) { int i, k; k=0; for (i=0; inum_trans; i++) { if (png_ptr->trans[i] != 0 && png_ptr->trans[i] != 0xff) k=1; /* partial transparency is present */ } if (k == 0) png_ptr->transformations &= ~PNG_GAMMA; } if ((png_ptr->transformations & (PNG_GAMMA | PNG_RGB_TO_GRAY)) && png_ptr->gamma != 0.0) { png_build_gamma_table(png_ptr); #if defined(PNG_READ_BACKGROUND_SUPPORTED) if (png_ptr->transformations & PNG_BACKGROUND) { if (color_type == PNG_COLOR_TYPE_PALETTE) { /* could skip if no transparency and */ png_color back, back_1; png_colorp palette = png_ptr->palette; int num_palette = png_ptr->num_palette; int i; if (png_ptr->background_gamma_type == PNG_BACKGROUND_GAMMA_FILE) { back.red = png_ptr->gamma_table[png_ptr->background.red]; back.green = png_ptr->gamma_table[png_ptr->background.green]; back.blue = png_ptr->gamma_table[png_ptr->background.blue]; back_1.red = png_ptr->gamma_to_1[png_ptr->background.red]; back_1.green = png_ptr->gamma_to_1[png_ptr->background.green]; back_1.blue = png_ptr->gamma_to_1[png_ptr->background.blue]; } else { double g, gs; switch (png_ptr->background_gamma_type) { case PNG_BACKGROUND_GAMMA_SCREEN: g = (png_ptr->screen_gamma); gs = 1.0; break; case PNG_BACKGROUND_GAMMA_FILE: g = 1.0 / (png_ptr->gamma); gs = 1.0 / (png_ptr->gamma * png_ptr->screen_gamma); break; case PNG_BACKGROUND_GAMMA_UNIQUE: g = 1.0 / (png_ptr->background_gamma); gs = 1.0 / (png_ptr->background_gamma * png_ptr->screen_gamma); break; default: g = 1.0; /* back_1 */ gs = 1.0; /* back */ } if ( fabs(gs - 1.0) < PNG_GAMMA_THRESHOLD) { back.red = (png_byte)png_ptr->background.red; back.green = (png_byte)png_ptr->background.green; back.blue = (png_byte)png_ptr->background.blue; } else { back.red = (png_byte)(pow( (double)png_ptr->background.red/255, gs) * 255.0 + .5); back.green = (png_byte)(pow( (double)png_ptr->background.green/255, gs) * 255.0 + .5); back.blue = (png_byte)(pow( (double)png_ptr->background.blue/255, gs) * 255.0 + .5); } back_1.red = (png_byte)(pow( (double)png_ptr->background.red/255, g) * 255.0 + .5); back_1.green = (png_byte)(pow( (double)png_ptr->background.green/255, g) * 255.0 + .5); back_1.blue = (png_byte)(pow( (double)png_ptr->background.blue/255, g) * 255.0 + .5); } for (i = 0; i < num_palette; i++) { if (i < (int)png_ptr->num_trans && png_ptr->trans[i] != 0xff) { if (png_ptr->trans[i] == 0) { palette[i] = back; } else /* if (png_ptr->trans[i] != 0xff) */ { png_byte v, w; v = png_ptr->gamma_to_1[palette[i].red]; png_composite(w, v, png_ptr->trans[i], back_1.red); palette[i].red = png_ptr->gamma_from_1[w]; v = png_ptr->gamma_to_1[palette[i].green]; png_composite(w, v, png_ptr->trans[i], back_1.green); palette[i].green = png_ptr->gamma_from_1[w]; v = png_ptr->gamma_to_1[palette[i].blue]; png_composite(w, v, png_ptr->trans[i], back_1.blue); palette[i].blue = png_ptr->gamma_from_1[w]; } } else { palette[i].red = png_ptr->gamma_table[palette[i].red]; palette[i].green = png_ptr->gamma_table[palette[i].green]; palette[i].blue = png_ptr->gamma_table[palette[i].blue]; } } /* Prevent the transformations being done again, and make sure * that the now spurious alpha channel is stripped - the code * has just reduced background composition and gamma correction * to a simple alpha channel strip. */ png_ptr->transformations &= ~PNG_BACKGROUND; png_ptr->transformations &= ~PNG_GAMMA; png_ptr->transformations |= PNG_STRIP_ALPHA; } /* if (png_ptr->background_gamma_type!=PNG_BACKGROUND_GAMMA_UNKNOWN) */ else /* color_type != PNG_COLOR_TYPE_PALETTE */ { double m = (double)(((png_uint_32)1 << png_ptr->bit_depth) - 1); double g = 1.0; double gs = 1.0; switch (png_ptr->background_gamma_type) { case PNG_BACKGROUND_GAMMA_SCREEN: g = (png_ptr->screen_gamma); gs = 1.0; break; case PNG_BACKGROUND_GAMMA_FILE: g = 1.0 / (png_ptr->gamma); gs = 1.0 / (png_ptr->gamma * png_ptr->screen_gamma); break; case PNG_BACKGROUND_GAMMA_UNIQUE: g = 1.0 / (png_ptr->background_gamma); gs = 1.0 / (png_ptr->background_gamma * png_ptr->screen_gamma); break; } png_ptr->background_1.gray = (png_uint_16)(pow( (double)png_ptr->background.gray / m, g) * m + .5); png_ptr->background.gray = (png_uint_16)(pow( (double)png_ptr->background.gray / m, gs) * m + .5); if ((png_ptr->background.red != png_ptr->background.green) || (png_ptr->background.red != png_ptr->background.blue) || (png_ptr->background.red != png_ptr->background.gray)) { /* RGB or RGBA with color background */ png_ptr->background_1.red = (png_uint_16)(pow( (double)png_ptr->background.red / m, g) * m + .5); png_ptr->background_1.green = (png_uint_16)(pow( (double)png_ptr->background.green / m, g) * m + .5); png_ptr->background_1.blue = (png_uint_16)(pow( (double)png_ptr->background.blue / m, g) * m + .5); png_ptr->background.red = (png_uint_16)(pow( (double)png_ptr->background.red / m, gs) * m + .5); png_ptr->background.green = (png_uint_16)(pow( (double)png_ptr->background.green / m, gs) * m + .5); png_ptr->background.blue = (png_uint_16)(pow( (double)png_ptr->background.blue / m, gs) * m + .5); } else { /* GRAY, GRAY ALPHA, RGB, or RGBA with gray background */ png_ptr->background_1.red = png_ptr->background_1.green = png_ptr->background_1.blue = png_ptr->background_1.gray; png_ptr->background.red = png_ptr->background.green = png_ptr->background.blue = png_ptr->background.gray; } } } else /* transformation does not include PNG_BACKGROUND */ #endif /* PNG_READ_BACKGROUND_SUPPORTED */ if (color_type == PNG_COLOR_TYPE_PALETTE) { png_colorp palette = png_ptr->palette; int num_palette = png_ptr->num_palette; int i; for (i = 0; i < num_palette; i++) { palette[i].red = png_ptr->gamma_table[palette[i].red]; palette[i].green = png_ptr->gamma_table[palette[i].green]; palette[i].blue = png_ptr->gamma_table[palette[i].blue]; } /* Done the gamma correction. */ png_ptr->transformations &= ~PNG_GAMMA; } } #if defined(PNG_READ_BACKGROUND_SUPPORTED) else #endif #endif /* PNG_READ_GAMMA_SUPPORTED && PNG_FLOATING_POINT_SUPPORTED */ #if defined(PNG_READ_BACKGROUND_SUPPORTED) /* No GAMMA transformation */ if ((png_ptr->transformations & PNG_BACKGROUND) && (color_type == PNG_COLOR_TYPE_PALETTE)) { int i; int istop = (int)png_ptr->num_trans; png_color back; png_colorp palette = png_ptr->palette; back.red = (png_byte)png_ptr->background.red; back.green = (png_byte)png_ptr->background.green; back.blue = (png_byte)png_ptr->background.blue; for (i = 0; i < istop; i++) { if (png_ptr->trans[i] == 0) { palette[i] = back; } else if (png_ptr->trans[i] != 0xff) { /* The png_composite() macro is defined in png.h */ png_composite(palette[i].red, palette[i].red, png_ptr->trans[i], back.red); png_composite(palette[i].green, palette[i].green, png_ptr->trans[i], back.green); png_composite(palette[i].blue, palette[i].blue, png_ptr->trans[i], back.blue); } } /* Handled alpha, still need to strip the channel. */ png_ptr->transformations &= ~PNG_BACKGROUND; png_ptr->transformations |= PNG_STRIP_ALPHA; } #endif /* PNG_READ_BACKGROUND_SUPPORTED */ #if defined(PNG_READ_SHIFT_SUPPORTED) if ((png_ptr->transformations & PNG_SHIFT) && (color_type == PNG_COLOR_TYPE_PALETTE)) { png_uint_16 i; png_uint_16 istop = png_ptr->num_palette; int sr = 8 - png_ptr->sig_bit.red; int sg = 8 - png_ptr->sig_bit.green; int sb = 8 - png_ptr->sig_bit.blue; if (sr < 0 || sr > 8) sr = 0; if (sg < 0 || sg > 8) sg = 0; if (sb < 0 || sb > 8) sb = 0; for (i = 0; i < istop; i++) { png_ptr->palette[i].red >>= sr; png_ptr->palette[i].green >>= sg; png_ptr->palette[i].blue >>= sb; } } #endif /* PNG_READ_SHIFT_SUPPORTED */ } #if !defined(PNG_READ_GAMMA_SUPPORTED) && !defined(PNG_READ_SHIFT_SUPPORTED) \ && !defined(PNG_READ_BACKGROUND_SUPPORTED) if (png_ptr) return; #endif } /* Modify the info structure to reflect the transformations. The * info should be updated so a PNG file could be written with it, * assuming the transformations result in valid PNG data. */ void /* PRIVATE */ png_read_transform_info(png_structp png_ptr, png_infop info_ptr) { png_debug(1, "in png_read_transform_info"); #if defined(PNG_READ_EXPAND_SUPPORTED) if (png_ptr->transformations & PNG_EXPAND) { if (info_ptr->color_type == PNG_COLOR_TYPE_PALETTE) { if (png_ptr->num_trans && (png_ptr->transformations & PNG_EXPAND_tRNS)) info_ptr->color_type = PNG_COLOR_TYPE_RGB_ALPHA; else info_ptr->color_type = PNG_COLOR_TYPE_RGB; info_ptr->bit_depth = 8; info_ptr->num_trans = 0; } else { if (png_ptr->num_trans) { if (png_ptr->transformations & PNG_EXPAND_tRNS) info_ptr->color_type |= PNG_COLOR_MASK_ALPHA; #if 0 /* Removed from libpng-1.2.27 */ else info_ptr->color_type |= PNG_COLOR_MASK_COLOR; #endif } if (info_ptr->bit_depth < 8) info_ptr->bit_depth = 8; info_ptr->num_trans = 0; } } #endif #if defined(PNG_READ_BACKGROUND_SUPPORTED) if (png_ptr->transformations & PNG_BACKGROUND) { info_ptr->color_type &= ~PNG_COLOR_MASK_ALPHA; info_ptr->num_trans = 0; info_ptr->background = png_ptr->background; } #endif #if defined(PNG_READ_GAMMA_SUPPORTED) if (png_ptr->transformations & PNG_GAMMA) { #ifdef PNG_FLOATING_POINT_SUPPORTED info_ptr->gamma = png_ptr->gamma; #endif #ifdef PNG_FIXED_POINT_SUPPORTED info_ptr->int_gamma = png_ptr->int_gamma; #endif } #endif #if defined(PNG_READ_16_TO_8_SUPPORTED) if ((png_ptr->transformations & PNG_16_TO_8) && (info_ptr->bit_depth == 16)) info_ptr->bit_depth = 8; #endif #if defined(PNG_READ_GRAY_TO_RGB_SUPPORTED) if (png_ptr->transformations & PNG_GRAY_TO_RGB) info_ptr->color_type |= PNG_COLOR_MASK_COLOR; #endif #if defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) if (png_ptr->transformations & PNG_RGB_TO_GRAY) info_ptr->color_type &= ~PNG_COLOR_MASK_COLOR; #endif #if defined(PNG_READ_DITHER_SUPPORTED) if (png_ptr->transformations & PNG_DITHER) { if (((info_ptr->color_type == PNG_COLOR_TYPE_RGB) || (info_ptr->color_type == PNG_COLOR_TYPE_RGB_ALPHA)) && png_ptr->palette_lookup && info_ptr->bit_depth == 8) { info_ptr->color_type = PNG_COLOR_TYPE_PALETTE; } } #endif #if defined(PNG_READ_PACK_SUPPORTED) if ((png_ptr->transformations & PNG_PACK) && (info_ptr->bit_depth < 8)) info_ptr->bit_depth = 8; #endif if (info_ptr->color_type == PNG_COLOR_TYPE_PALETTE) info_ptr->channels = 1; else if (info_ptr->color_type & PNG_COLOR_MASK_COLOR) info_ptr->channels = 3; else info_ptr->channels = 1; #if defined(PNG_READ_STRIP_ALPHA_SUPPORTED) if (png_ptr->flags & PNG_FLAG_STRIP_ALPHA) info_ptr->color_type &= ~PNG_COLOR_MASK_ALPHA; #endif if (info_ptr->color_type & PNG_COLOR_MASK_ALPHA) info_ptr->channels++; #if defined(PNG_READ_FILLER_SUPPORTED) /* STRIP_ALPHA and FILLER allowed: MASK_ALPHA bit stripped above */ if ((png_ptr->transformations & PNG_FILLER) && ((info_ptr->color_type == PNG_COLOR_TYPE_RGB) || (info_ptr->color_type == PNG_COLOR_TYPE_GRAY))) { info_ptr->channels++; /* if adding a true alpha channel not just filler */ if (png_ptr->transformations & PNG_ADD_ALPHA) info_ptr->color_type |= PNG_COLOR_MASK_ALPHA; } #endif #if defined(PNG_USER_TRANSFORM_PTR_SUPPORTED) && \ defined(PNG_READ_USER_TRANSFORM_SUPPORTED) if (png_ptr->transformations & PNG_USER_TRANSFORM) { if (info_ptr->bit_depth < png_ptr->user_transform_depth) info_ptr->bit_depth = png_ptr->user_transform_depth; if (info_ptr->channels < png_ptr->user_transform_channels) info_ptr->channels = png_ptr->user_transform_channels; } #endif info_ptr->pixel_depth = (png_byte)(info_ptr->channels * info_ptr->bit_depth); info_ptr->rowbytes = PNG_ROWBYTES(info_ptr->pixel_depth, info_ptr->width); #if !defined(PNG_READ_EXPAND_SUPPORTED) if (png_ptr) return; #endif } /* Transform the row. The order of transformations is significant, * and is very touchy. If you add a transformation, take care to * decide how it fits in with the other transformations here. */ void /* PRIVATE */ png_do_read_transformations(png_structp png_ptr) { png_debug(1, "in png_do_read_transformations"); if (png_ptr->row_buf == NULL) { #if !defined(PNG_NO_STDIO) && !defined(_WIN32_WCE) char msg[50]; png_snprintf2(msg, 50, "NULL row buffer for row %ld, pass %d", (long)png_ptr->row_number, png_ptr->pass); png_error(png_ptr, msg); #else png_error(png_ptr, "NULL row buffer"); #endif } #ifdef PNG_WARN_UNINITIALIZED_ROW if (!(png_ptr->flags & PNG_FLAG_ROW_INIT)) /* Application has failed to call either png_read_start_image() * or png_read_update_info() after setting transforms that expand * pixels. This check added to libpng-1.2.19 */ #if (PNG_WARN_UNINITIALIZED_ROW==1) png_error(png_ptr, "Uninitialized row"); #else png_warning(png_ptr, "Uninitialized row"); #endif #endif #if defined(PNG_READ_EXPAND_SUPPORTED) if (png_ptr->transformations & PNG_EXPAND) { if (png_ptr->row_info.color_type == PNG_COLOR_TYPE_PALETTE) { png_do_expand_palette(&(png_ptr->row_info), png_ptr->row_buf + 1, png_ptr->palette, png_ptr->trans, png_ptr->num_trans); } else { if (png_ptr->num_trans && (png_ptr->transformations & PNG_EXPAND_tRNS)) png_do_expand(&(png_ptr->row_info), png_ptr->row_buf + 1, &(png_ptr->trans_color)); else png_do_expand(&(png_ptr->row_info), png_ptr->row_buf + 1, NULL); } } #endif #if defined(PNG_READ_STRIP_ALPHA_SUPPORTED) if (png_ptr->flags & PNG_FLAG_STRIP_ALPHA) png_do_strip_filler(&(png_ptr->row_info), png_ptr->row_buf + 1, PNG_FLAG_FILLER_AFTER | (png_ptr->flags & PNG_FLAG_STRIP_ALPHA)); #endif #if defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) if (png_ptr->transformations & PNG_RGB_TO_GRAY) { int rgb_error = png_do_rgb_to_gray(png_ptr, &(png_ptr->row_info), png_ptr->row_buf + 1); if (rgb_error) { png_ptr->rgb_to_gray_status=1; if ((png_ptr->transformations & PNG_RGB_TO_GRAY) == PNG_RGB_TO_GRAY_WARN) png_warning(png_ptr, "png_do_rgb_to_gray found nongray pixel"); if ((png_ptr->transformations & PNG_RGB_TO_GRAY) == PNG_RGB_TO_GRAY_ERR) png_error(png_ptr, "png_do_rgb_to_gray found nongray pixel"); } } #endif /* From Andreas Dilger e-mail to png-implement, 26 March 1998: In most cases, the "simple transparency" should be done prior to doing gray-to-RGB, or you will have to test 3x as many bytes to check if a pixel is transparent. You would also need to make sure that the transparency information is upgraded to RGB. To summarize, the current flow is: - Gray + simple transparency -> compare 1 or 2 gray bytes and composite with background "in place" if transparent, convert to RGB if necessary - Gray + alpha -> composite with gray background and remove alpha bytes, convert to RGB if necessary To support RGB backgrounds for gray images we need: - Gray + simple transparency -> convert to RGB + simple transparency, compare 3 or 6 bytes and composite with background "in place" if transparent (3x compare/pixel compared to doing composite with gray bkgrnd) - Gray + alpha -> convert to RGB + alpha, composite with background and remove alpha bytes (3x float operations/pixel compared with composite on gray background) Greg's change will do this. The reason it wasn't done before is for performance, as this increases the per-pixel operations. If we would check in advance if the background was gray or RGB, and position the gray-to-RGB transform appropriately, then it would save a lot of work/time. */ #if defined(PNG_READ_GRAY_TO_RGB_SUPPORTED) /* if gray -> RGB, do so now only if background is non-gray; else do later * for performance reasons */ if ((png_ptr->transformations & PNG_GRAY_TO_RGB) && !(png_ptr->mode & PNG_BACKGROUND_IS_GRAY)) png_do_gray_to_rgb(&(png_ptr->row_info), png_ptr->row_buf + 1); #endif #if defined(PNG_READ_BACKGROUND_SUPPORTED) if ((png_ptr->transformations & PNG_BACKGROUND) && ((png_ptr->num_trans != 0 ) || (png_ptr->color_type & PNG_COLOR_MASK_ALPHA))) png_do_background(&(png_ptr->row_info), png_ptr->row_buf + 1, &(png_ptr->trans_color), &(png_ptr->background) #if defined(PNG_READ_GAMMA_SUPPORTED) , &(png_ptr->background_1), png_ptr->gamma_table, png_ptr->gamma_from_1, png_ptr->gamma_to_1, png_ptr->gamma_16_table, png_ptr->gamma_16_from_1, png_ptr->gamma_16_to_1, png_ptr->gamma_shift #endif ); #endif #if defined(PNG_READ_GAMMA_SUPPORTED) if ((png_ptr->transformations & PNG_GAMMA) && #if defined(PNG_READ_BACKGROUND_SUPPORTED) !((png_ptr->transformations & PNG_BACKGROUND) && ((png_ptr->num_trans != 0) || (png_ptr->color_type & PNG_COLOR_MASK_ALPHA))) && #endif (png_ptr->color_type != PNG_COLOR_TYPE_PALETTE)) png_do_gamma(&(png_ptr->row_info), png_ptr->row_buf + 1, png_ptr->gamma_table, png_ptr->gamma_16_table, png_ptr->gamma_shift); #endif #if defined(PNG_READ_16_TO_8_SUPPORTED) if (png_ptr->transformations & PNG_16_TO_8) png_do_chop(&(png_ptr->row_info), png_ptr->row_buf + 1); #endif #if defined(PNG_READ_DITHER_SUPPORTED) if (png_ptr->transformations & PNG_DITHER) { png_do_dither((png_row_infop)&(png_ptr->row_info), png_ptr->row_buf + 1, png_ptr->palette_lookup, png_ptr->dither_index); if (png_ptr->row_info.rowbytes == (png_uint_32)0) png_error(png_ptr, "png_do_dither returned rowbytes=0"); } #endif #if defined(PNG_READ_INVERT_SUPPORTED) if (png_ptr->transformations & PNG_INVERT_MONO) png_do_invert(&(png_ptr->row_info), png_ptr->row_buf + 1); #endif #if defined(PNG_READ_SHIFT_SUPPORTED) if (png_ptr->transformations & PNG_SHIFT) png_do_unshift(&(png_ptr->row_info), png_ptr->row_buf + 1, &(png_ptr->shift)); #endif #if defined(PNG_READ_PACK_SUPPORTED) if (png_ptr->transformations & PNG_PACK) png_do_unpack(&(png_ptr->row_info), png_ptr->row_buf + 1); #endif #if defined(PNG_READ_BGR_SUPPORTED) if (png_ptr->transformations & PNG_BGR) png_do_bgr(&(png_ptr->row_info), png_ptr->row_buf + 1); #endif #if defined(PNG_READ_PACKSWAP_SUPPORTED) if (png_ptr->transformations & PNG_PACKSWAP) png_do_packswap(&(png_ptr->row_info), png_ptr->row_buf + 1); #endif #if defined(PNG_READ_GRAY_TO_RGB_SUPPORTED) /* if gray -> RGB, do so now only if we did not do so above */ if ((png_ptr->transformations & PNG_GRAY_TO_RGB) && (png_ptr->mode & PNG_BACKGROUND_IS_GRAY)) png_do_gray_to_rgb(&(png_ptr->row_info), png_ptr->row_buf + 1); #endif #if defined(PNG_READ_FILLER_SUPPORTED) if (png_ptr->transformations & PNG_FILLER) png_do_read_filler(&(png_ptr->row_info), png_ptr->row_buf + 1, (png_uint_32)png_ptr->filler, png_ptr->flags); #endif #if defined(PNG_READ_PREMULTIPLY_ALPHA_SUPPORTED) if (png_ptr->transformations & PNG_PREMULTIPLY_ALPHA) png_do_read_premultiply_alpha(&(png_ptr->row_info), png_ptr->row_buf + 1); #endif #if defined(PNG_READ_INVERT_ALPHA_SUPPORTED) if (png_ptr->transformations & PNG_INVERT_ALPHA) png_do_read_invert_alpha(&(png_ptr->row_info), png_ptr->row_buf + 1); #endif #if defined(PNG_READ_SWAP_ALPHA_SUPPORTED) if (png_ptr->transformations & PNG_SWAP_ALPHA) png_do_read_swap_alpha(&(png_ptr->row_info), png_ptr->row_buf + 1); #endif #if defined(PNG_READ_SWAP_SUPPORTED) if (png_ptr->transformations & PNG_SWAP_BYTES) png_do_swap(&(png_ptr->row_info), png_ptr->row_buf + 1); #endif #if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) if (png_ptr->transformations & PNG_USER_TRANSFORM) { if (png_ptr->read_user_transform_fn != NULL) (*(png_ptr->read_user_transform_fn)) /* user read transform function */ (png_ptr, /* png_ptr */ &(png_ptr->row_info), /* row_info: */ /* png_uint_32 width; width of row */ /* png_uint_32 rowbytes; number of bytes in row */ /* png_byte color_type; color type of pixels */ /* png_byte bit_depth; bit depth of samples */ /* png_byte channels; number of channels (1-4) */ /* png_byte pixel_depth; bits per pixel (depth*channels) */ png_ptr->row_buf + 1); /* start of pixel data for row */ #if defined(PNG_USER_TRANSFORM_PTR_SUPPORTED) if (png_ptr->user_transform_depth) png_ptr->row_info.bit_depth = png_ptr->user_transform_depth; if (png_ptr->user_transform_channels) png_ptr->row_info.channels = png_ptr->user_transform_channels; #endif png_ptr->row_info.pixel_depth = (png_byte)(png_ptr->row_info.bit_depth * png_ptr->row_info.channels); png_ptr->row_info.rowbytes = PNG_ROWBYTES(png_ptr->row_info.pixel_depth, png_ptr->row_info.width); } #endif } #if defined(PNG_READ_PACK_SUPPORTED) /* Unpack pixels of 1, 2, or 4 bits per pixel into 1 byte per pixel, * without changing the actual values. Thus, if you had a row with * a bit depth of 1, you would end up with bytes that only contained * the numbers 0 or 1. If you would rather they contain 0 and 255, use * png_do_shift() after this. */ void /* PRIVATE */ png_do_unpack(png_row_infop row_info, png_bytep row) { png_debug(1, "in png_do_unpack"); if (row_info->bit_depth < 8) { png_uint_32 i; png_uint_32 row_width=row_info->width; switch (row_info->bit_depth) { case 1: { png_bytep sp = row + (png_size_t)((row_width - 1) >> 3); png_bytep dp = row + (png_size_t)row_width - 1; png_uint_32 shift = 7 - (int)((row_width + 7) & 0x07); for (i = 0; i < row_width; i++) { *dp = (png_byte)((*sp >> shift) & 0x01); if (shift == 7) { shift = 0; sp--; } else shift++; dp--; } break; } case 2: { png_bytep sp = row + (png_size_t)((row_width - 1) >> 2); png_bytep dp = row + (png_size_t)row_width - 1; png_uint_32 shift = (int)((3 - ((row_width + 3) & 0x03)) << 1); for (i = 0; i < row_width; i++) { *dp = (png_byte)((*sp >> shift) & 0x03); if (shift == 6) { shift = 0; sp--; } else shift += 2; dp--; } break; } case 4: { png_bytep sp = row + (png_size_t)((row_width - 1) >> 1); png_bytep dp = row + (png_size_t)row_width - 1; png_uint_32 shift = (int)((1 - ((row_width + 1) & 0x01)) << 2); for (i = 0; i < row_width; i++) { *dp = (png_byte)((*sp >> shift) & 0x0f); if (shift == 4) { shift = 0; sp--; } else shift = 4; dp--; } break; } } row_info->bit_depth = 8; row_info->pixel_depth = (png_byte)(8 * row_info->channels); row_info->rowbytes = row_width * row_info->channels; } } #endif #if defined(PNG_READ_SHIFT_SUPPORTED) /* Reverse the effects of png_do_shift. This routine merely shifts the * pixels back to their significant bits values. Thus, if you have * a row of bit depth 8, but only 5 are significant, this will shift * the values back to 0 through 31. */ void /* PRIVATE */ png_do_unshift(png_row_infop row_info, png_bytep row, png_color_8p sig_bits) { png_debug(1, "in png_do_unshift"); if ( row_info->color_type != PNG_COLOR_TYPE_PALETTE) { int shift[4]; int channels = 0; int c; png_uint_16 value = 0; png_uint_32 row_width = row_info->width; if (row_info->color_type & PNG_COLOR_MASK_COLOR) { shift[channels++] = row_info->bit_depth - sig_bits->red; shift[channels++] = row_info->bit_depth - sig_bits->green; shift[channels++] = row_info->bit_depth - sig_bits->blue; } else { shift[channels++] = row_info->bit_depth - sig_bits->gray; } if (row_info->color_type & PNG_COLOR_MASK_ALPHA) { shift[channels++] = row_info->bit_depth - sig_bits->alpha; } for (c = 0; c < channels; c++) { if (shift[c] <= 0) shift[c] = 0; else value = 1; } if (!value) return; switch (row_info->bit_depth) { case 2: { png_bytep bp; png_uint_32 i; png_uint_32 istop = row_info->rowbytes; for (bp = row, i = 0; i < istop; i++) { *bp >>= 1; *bp++ &= 0x55; } break; } case 4: { png_bytep bp = row; png_uint_32 i; png_uint_32 istop = row_info->rowbytes; png_byte mask = (png_byte)((((int)0xf0 >> shift[0]) & (int)0xf0) | (png_byte)((int)0xf >> shift[0])); for (i = 0; i < istop; i++) { *bp >>= shift[0]; *bp++ &= mask; } break; } case 8: { png_bytep bp = row; png_uint_32 i; png_uint_32 istop = row_width * channels; for (i = 0; i < istop; i++) { *bp++ >>= shift[i%channels]; } break; } case 16: { png_bytep bp = row; png_uint_32 i; png_uint_32 istop = channels * row_width; for (i = 0; i < istop; i++) { value = (png_uint_16)((*bp << 8) + *(bp + 1)); value >>= shift[i%channels]; *bp++ = (png_byte)(value >> 8); *bp++ = (png_byte)(value & 0xff); } break; } } } } #endif #if defined(PNG_READ_16_TO_8_SUPPORTED) /* chop rows of bit depth 16 down to 8 */ void /* PRIVATE */ png_do_chop(png_row_infop row_info, png_bytep row) { png_debug(1, "in png_do_chop"); if (row_info->bit_depth == 16) { png_bytep sp = row; png_bytep dp = row; png_uint_32 i; png_uint_32 istop = row_info->width * row_info->channels; for (i = 0; i> 8)) >> 8; * * Approximate calculation with shift/add instead of multiply/divide: * *dp = ((((png_uint_32)(*sp) << 8) | * (png_uint_32)((int)(*(sp + 1)) - *sp)) + 128) >> 8; * * What we actually do to avoid extra shifting and conversion: */ *dp = *sp + ((((int)(*(sp + 1)) - *sp) > 128) ? 1 : 0); #else /* Simply discard the low order byte */ *dp = *sp; #endif } row_info->bit_depth = 8; row_info->pixel_depth = (png_byte)(8 * row_info->channels); row_info->rowbytes = row_info->width * row_info->channels; } } #endif #if defined(PNG_READ_SWAP_ALPHA_SUPPORTED) void /* PRIVATE */ png_do_read_swap_alpha(png_row_infop row_info, png_bytep row) { png_debug(1, "in png_do_read_swap_alpha"); { png_uint_32 row_width = row_info->width; if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA) { /* This converts from RGBA to ARGB */ if (row_info->bit_depth == 8) { png_bytep sp = row + row_info->rowbytes; png_bytep dp = sp; png_byte save; png_uint_32 i; for (i = 0; i < row_width; i++) { save = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = save; } } /* This converts from RRGGBBAA to AARRGGBB */ else { png_bytep sp = row + row_info->rowbytes; png_bytep dp = sp; png_byte save[2]; png_uint_32 i; for (i = 0; i < row_width; i++) { save[0] = *(--sp); save[1] = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = save[0]; *(--dp) = save[1]; } } } else if (row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA) { /* This converts from GA to AG */ if (row_info->bit_depth == 8) { png_bytep sp = row + row_info->rowbytes; png_bytep dp = sp; png_byte save; png_uint_32 i; for (i = 0; i < row_width; i++) { save = *(--sp); *(--dp) = *(--sp); *(--dp) = save; } } /* This converts from GGAA to AAGG */ else { png_bytep sp = row + row_info->rowbytes; png_bytep dp = sp; png_byte save[2]; png_uint_32 i; for (i = 0; i < row_width; i++) { save[0] = *(--sp); save[1] = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = save[0]; *(--dp) = save[1]; } } } } } #endif #if defined(PNG_READ_INVERT_ALPHA_SUPPORTED) void /* PRIVATE */ png_do_read_invert_alpha(png_row_infop row_info, png_bytep row) { png_debug(1, "in png_do_read_invert_alpha"); { png_uint_32 row_width = row_info->width; if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA) { /* This inverts the alpha channel in RGBA */ if (row_info->bit_depth == 8) { png_bytep sp = row + row_info->rowbytes; png_bytep dp = sp; png_uint_32 i; for (i = 0; i < row_width; i++) { *(--dp) = (png_byte)(255 - *(--sp)); /* This does nothing: *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); We can replace it with: */ sp-=3; dp=sp; } } /* This inverts the alpha channel in RRGGBBAA */ else { png_bytep sp = row + row_info->rowbytes; png_bytep dp = sp; png_uint_32 i; for (i = 0; i < row_width; i++) { *(--dp) = (png_byte)(255 - *(--sp)); *(--dp) = (png_byte)(255 - *(--sp)); /* This does nothing: *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); We can replace it with: */ sp-=6; dp=sp; } } } else if (row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA) { /* This inverts the alpha channel in GA */ if (row_info->bit_depth == 8) { png_bytep sp = row + row_info->rowbytes; png_bytep dp = sp; png_uint_32 i; for (i = 0; i < row_width; i++) { *(--dp) = (png_byte)(255 - *(--sp)); *(--dp) = *(--sp); } } /* This inverts the alpha channel in GGAA */ else { png_bytep sp = row + row_info->rowbytes; png_bytep dp = sp; png_uint_32 i; for (i = 0; i < row_width; i++) { *(--dp) = (png_byte)(255 - *(--sp)); *(--dp) = (png_byte)(255 - *(--sp)); /* *(--dp) = *(--sp); *(--dp) = *(--sp); */ sp-=2; dp=sp; } } } } } #endif #if defined(PNG_READ_PREMULTIPLY_ALPHA_SUPPORTED) void /* PRIVATE */ png_do_read_premultiply_alpha(png_row_infop row_info, png_bytep row) { png_debug(1, "in png_do_read_premultiply_alpha"); { png_uint_32 row_width = row_info->width; if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA) { /* This premultiplies the pixels with the alpha channel in RGBA */ if (row_info->bit_depth == 8) { png_bytep sp = row + row_info->rowbytes; png_bytep dp = sp; png_uint_16 a = 0; png_uint_32 i; for (i = 0; i < row_width; i++) { a = *(--sp); --dp; *(--dp) = (*(--sp) * a) / 255; *(--dp) = (*(--sp) * a) / 255; *(--dp) = (*(--sp) * a) / 255; } } /* This premultiplies the pixels with the alpha channel in RRGGBBAA */ else { png_uint_16p sp = (png_uint_16p)(row + row_info->rowbytes); png_uint_16p dp = sp; png_uint_32 a = 0; png_uint_32 i; for (i = 0; i < row_width; i++) { a = *(--sp); --dp; *(--dp) = (png_uint_16) ((*(--sp) * a) / 65535); *(--dp) = (png_uint_16) ((*(--sp) * a) / 65535); *(--dp) = (png_uint_16) ((*(--sp) * a) / 65535); } } } else if (row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA) { /* This premultiplies the pixels with the alpha channel in GA */ if (row_info->bit_depth == 8) { png_bytep sp = row + row_info->rowbytes; png_bytep dp = sp; png_uint_16 a = 0; png_uint_32 i; for (i = 0; i < row_width; i++) { a = *(--sp); --dp; *(--dp) = (*(--sp) * a) / 255; } } /* This premultiplies the pixels with the alpha channel in GGAA */ else { png_uint_16p sp = (png_uint_16p) (row + row_info->rowbytes); png_uint_16p dp = sp; png_uint_32 a = 0; png_uint_32 i; for (i = 0; i < row_width; i++) { a = *(--sp); --dp; *(--dp) = (png_uint_16) ((*(--sp) * a) / 65535); } } } } } #endif #if defined(PNG_READ_FILLER_SUPPORTED) /* Add filler channel if we have RGB color */ void /* PRIVATE */ png_do_read_filler(png_row_infop row_info, png_bytep row, png_uint_32 filler, png_uint_32 flags) { png_uint_32 i; png_uint_32 row_width = row_info->width; png_byte hi_filler = (png_byte)((filler>>8) & 0xff); png_byte lo_filler = (png_byte)(filler & 0xff); png_debug(1, "in png_do_read_filler"); if ( row_info->color_type == PNG_COLOR_TYPE_GRAY) { if (row_info->bit_depth == 8) { /* This changes the data from G to GX */ if (flags & PNG_FLAG_FILLER_AFTER) { png_bytep sp = row + (png_size_t)row_width; png_bytep dp = sp + (png_size_t)row_width; for (i = 1; i < row_width; i++) { *(--dp) = lo_filler; *(--dp) = *(--sp); } *(--dp) = lo_filler; row_info->channels = 2; row_info->pixel_depth = 16; row_info->rowbytes = row_width * 2; } /* This changes the data from G to XG */ else { png_bytep sp = row + (png_size_t)row_width; png_bytep dp = sp + (png_size_t)row_width; for (i = 0; i < row_width; i++) { *(--dp) = *(--sp); *(--dp) = lo_filler; } row_info->channels = 2; row_info->pixel_depth = 16; row_info->rowbytes = row_width * 2; } } else if (row_info->bit_depth == 16) { /* This changes the data from GG to GGXX */ if (flags & PNG_FLAG_FILLER_AFTER) { png_bytep sp = row + (png_size_t)row_width * 2; png_bytep dp = sp + (png_size_t)row_width * 2; for (i = 1; i < row_width; i++) { *(--dp) = hi_filler; *(--dp) = lo_filler; *(--dp) = *(--sp); *(--dp) = *(--sp); } *(--dp) = hi_filler; *(--dp) = lo_filler; row_info->channels = 2; row_info->pixel_depth = 32; row_info->rowbytes = row_width * 4; } /* This changes the data from GG to XXGG */ else { png_bytep sp = row + (png_size_t)row_width * 2; png_bytep dp = sp + (png_size_t)row_width * 2; for (i = 0; i < row_width; i++) { *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = hi_filler; *(--dp) = lo_filler; } row_info->channels = 2; row_info->pixel_depth = 32; row_info->rowbytes = row_width * 4; } } } /* COLOR_TYPE == GRAY */ else if (row_info->color_type == PNG_COLOR_TYPE_RGB) { if (row_info->bit_depth == 8) { /* This changes the data from RGB to RGBX */ if (flags & PNG_FLAG_FILLER_AFTER) { png_bytep sp = row + (png_size_t)row_width * 3; png_bytep dp = sp + (png_size_t)row_width; for (i = 1; i < row_width; i++) { *(--dp) = lo_filler; *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); } *(--dp) = lo_filler; row_info->channels = 4; row_info->pixel_depth = 32; row_info->rowbytes = row_width * 4; } /* This changes the data from RGB to XRGB */ else { png_bytep sp = row + (png_size_t)row_width * 3; png_bytep dp = sp + (png_size_t)row_width; for (i = 0; i < row_width; i++) { *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = lo_filler; } row_info->channels = 4; row_info->pixel_depth = 32; row_info->rowbytes = row_width * 4; } } else if (row_info->bit_depth == 16) { /* This changes the data from RRGGBB to RRGGBBXX */ if (flags & PNG_FLAG_FILLER_AFTER) { png_bytep sp = row + (png_size_t)row_width * 6; png_bytep dp = sp + (png_size_t)row_width * 2; for (i = 1; i < row_width; i++) { *(--dp) = hi_filler; *(--dp) = lo_filler; *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); } *(--dp) = hi_filler; *(--dp) = lo_filler; row_info->channels = 4; row_info->pixel_depth = 64; row_info->rowbytes = row_width * 8; } /* This changes the data from RRGGBB to XXRRGGBB */ else { png_bytep sp = row + (png_size_t)row_width * 6; png_bytep dp = sp + (png_size_t)row_width * 2; for (i = 0; i < row_width; i++) { *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = *(--sp); *(--dp) = hi_filler; *(--dp) = lo_filler; } row_info->channels = 4; row_info->pixel_depth = 64; row_info->rowbytes = row_width * 8; } } } /* COLOR_TYPE == RGB */ } #endif #if defined(PNG_READ_GRAY_TO_RGB_SUPPORTED) /* expand grayscale files to RGB, with or without alpha */ void /* PRIVATE */ png_do_gray_to_rgb(png_row_infop row_info, png_bytep row) { png_uint_32 i; png_uint_32 row_width = row_info->width; png_debug(1, "in png_do_gray_to_rgb"); if (row_info->bit_depth >= 8 && !(row_info->color_type & PNG_COLOR_MASK_COLOR)) { if (row_info->color_type == PNG_COLOR_TYPE_GRAY) { if (row_info->bit_depth == 8) { png_bytep sp = row + (png_size_t)row_width - 1; png_bytep dp = sp + (png_size_t)row_width * 2; for (i = 0; i < row_width; i++) { *(dp--) = *sp; *(dp--) = *sp; *(dp--) = *(sp--); } } else { png_bytep sp = row + (png_size_t)row_width * 2 - 1; png_bytep dp = sp + (png_size_t)row_width * 4; for (i = 0; i < row_width; i++) { *(dp--) = *sp; *(dp--) = *(sp - 1); *(dp--) = *sp; *(dp--) = *(sp - 1); *(dp--) = *(sp--); *(dp--) = *(sp--); } } } else if (row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA) { if (row_info->bit_depth == 8) { png_bytep sp = row + (png_size_t)row_width * 2 - 1; png_bytep dp = sp + (png_size_t)row_width * 2; for (i = 0; i < row_width; i++) { *(dp--) = *(sp--); *(dp--) = *sp; *(dp--) = *sp; *(dp--) = *(sp--); } } else { png_bytep sp = row + (png_size_t)row_width * 4 - 1; png_bytep dp = sp + (png_size_t)row_width * 4; for (i = 0; i < row_width; i++) { *(dp--) = *(sp--); *(dp--) = *(sp--); *(dp--) = *sp; *(dp--) = *(sp - 1); *(dp--) = *sp; *(dp--) = *(sp - 1); *(dp--) = *(sp--); *(dp--) = *(sp--); } } } row_info->channels += (png_byte)2; row_info->color_type |= PNG_COLOR_MASK_COLOR; row_info->pixel_depth = (png_byte)(row_info->channels * row_info->bit_depth); row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth, row_width); } } #endif #if defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) /* reduce RGB files to grayscale, with or without alpha * using the equation given in Poynton's ColorFAQ at * (THIS LINK IS DEAD June 2008) * New link: * * Charles Poynton poynton at poynton.com * * Y = 0.212671 * R + 0.715160 * G + 0.072169 * B * * We approximate this with * * Y = 0.21268 * R + 0.7151 * G + 0.07217 * B * * which can be expressed with integers as * * Y = (6969 * R + 23434 * G + 2365 * B)/32768 * * The calculation is to be done in a linear colorspace. * * Other integer coefficents can be used via png_set_rgb_to_gray(). */ int /* PRIVATE */ png_do_rgb_to_gray(png_structp png_ptr, png_row_infop row_info, png_bytep row) { png_uint_32 i; png_uint_32 row_width = row_info->width; int rgb_error = 0; png_debug(1, "in png_do_rgb_to_gray"); if ( (row_info->color_type & PNG_COLOR_MASK_COLOR)) { png_uint_32 rc = png_ptr->rgb_to_gray_red_coeff; png_uint_32 gc = png_ptr->rgb_to_gray_green_coeff; png_uint_32 bc = png_ptr->rgb_to_gray_blue_coeff; if (row_info->color_type == PNG_COLOR_TYPE_RGB) { if (row_info->bit_depth == 8) { #if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) if (png_ptr->gamma_from_1 != NULL && png_ptr->gamma_to_1 != NULL) { png_bytep sp = row; png_bytep dp = row; for (i = 0; i < row_width; i++) { png_byte red = png_ptr->gamma_to_1[*(sp++)]; png_byte green = png_ptr->gamma_to_1[*(sp++)]; png_byte blue = png_ptr->gamma_to_1[*(sp++)]; if (red != green || red != blue) { rgb_error |= 1; *(dp++) = png_ptr->gamma_from_1[ (rc*red + gc*green + bc*blue)>>15]; } else *(dp++) = *(sp - 1); } } else #endif { png_bytep sp = row; png_bytep dp = row; for (i = 0; i < row_width; i++) { png_byte red = *(sp++); png_byte green = *(sp++); png_byte blue = *(sp++); if (red != green || red != blue) { rgb_error |= 1; *(dp++) = (png_byte)((rc*red + gc*green + bc*blue)>>15); } else *(dp++) = *(sp - 1); } } } else /* RGB bit_depth == 16 */ { #if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) if (png_ptr->gamma_16_to_1 != NULL && png_ptr->gamma_16_from_1 != NULL) { png_bytep sp = row; png_bytep dp = row; for (i = 0; i < row_width; i++) { png_uint_16 red, green, blue, w; red = (png_uint_16)(((*(sp))<<8) | *(sp+1)); sp+=2; green = (png_uint_16)(((*(sp))<<8) | *(sp+1)); sp+=2; blue = (png_uint_16)(((*(sp))<<8) | *(sp+1)); sp+=2; if (red == green && red == blue) w = red; else { png_uint_16 red_1 = png_ptr->gamma_16_to_1[(red&0xff) >> png_ptr->gamma_shift][red>>8]; png_uint_16 green_1 = png_ptr->gamma_16_to_1[(green&0xff) >> png_ptr->gamma_shift][green>>8]; png_uint_16 blue_1 = png_ptr->gamma_16_to_1[(blue&0xff) >> png_ptr->gamma_shift][blue>>8]; png_uint_16 gray16 = (png_uint_16)((rc*red_1 + gc*green_1 + bc*blue_1)>>15); w = png_ptr->gamma_16_from_1[(gray16&0xff) >> png_ptr->gamma_shift][gray16 >> 8]; rgb_error |= 1; } *(dp++) = (png_byte)((w>>8) & 0xff); *(dp++) = (png_byte)(w & 0xff); } } else #endif { png_bytep sp = row; png_bytep dp = row; for (i = 0; i < row_width; i++) { png_uint_16 red, green, blue, gray16; red = (png_uint_16)(((*(sp))<<8) | *(sp+1)); sp+=2; green = (png_uint_16)(((*(sp))<<8) | *(sp+1)); sp+=2; blue = (png_uint_16)(((*(sp))<<8) | *(sp+1)); sp+=2; if (red != green || red != blue) rgb_error |= 1; gray16 = (png_uint_16)((rc*red + gc*green + bc*blue)>>15); *(dp++) = (png_byte)((gray16>>8) & 0xff); *(dp++) = (png_byte)(gray16 & 0xff); } } } } if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA) { if (row_info->bit_depth == 8) { #if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) if (png_ptr->gamma_from_1 != NULL && png_ptr->gamma_to_1 != NULL) { png_bytep sp = row; png_bytep dp = row; for (i = 0; i < row_width; i++) { png_byte red = png_ptr->gamma_to_1[*(sp++)]; png_byte green = png_ptr->gamma_to_1[*(sp++)]; png_byte blue = png_ptr->gamma_to_1[*(sp++)]; if (red != green || red != blue) rgb_error |= 1; *(dp++) = png_ptr->gamma_from_1 [(rc*red + gc*green + bc*blue)>>15]; *(dp++) = *(sp++); /* alpha */ } } else #endif { png_bytep sp = row; png_bytep dp = row; for (i = 0; i < row_width; i++) { png_byte red = *(sp++); png_byte green = *(sp++); png_byte blue = *(sp++); if (red != green || red != blue) rgb_error |= 1; *(dp++) = (png_byte)((rc*red + gc*green + bc*blue)>>15); *(dp++) = *(sp++); /* alpha */ } } } else /* RGBA bit_depth == 16 */ { #if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) if (png_ptr->gamma_16_to_1 != NULL && png_ptr->gamma_16_from_1 != NULL) { png_bytep sp = row; png_bytep dp = row; for (i = 0; i < row_width; i++) { png_uint_16 red, green, blue, w; red = (png_uint_16)(((*(sp))<<8) | *(sp+1)); sp+=2; green = (png_uint_16)(((*(sp))<<8) | *(sp+1)); sp+=2; blue = (png_uint_16)(((*(sp))<<8) | *(sp+1)); sp+=2; if (red == green && red == blue) w = red; else { png_uint_16 red_1 = png_ptr->gamma_16_to_1[(red&0xff) >> png_ptr->gamma_shift][red>>8]; png_uint_16 green_1 = png_ptr->gamma_16_to_1[(green&0xff) >> png_ptr->gamma_shift][green>>8]; png_uint_16 blue_1 = png_ptr->gamma_16_to_1[(blue&0xff) >> png_ptr->gamma_shift][blue>>8]; png_uint_16 gray16 = (png_uint_16)((rc * red_1 + gc * green_1 + bc * blue_1)>>15); w = png_ptr->gamma_16_from_1[(gray16&0xff) >> png_ptr->gamma_shift][gray16 >> 8]; rgb_error |= 1; } *(dp++) = (png_byte)((w>>8) & 0xff); *(dp++) = (png_byte)(w & 0xff); *(dp++) = *(sp++); /* alpha */ *(dp++) = *(sp++); } } else #endif { png_bytep sp = row; png_bytep dp = row; for (i = 0; i < row_width; i++) { png_uint_16 red, green, blue, gray16; red = (png_uint_16)((*(sp)<<8) | *(sp+1)); sp+=2; green = (png_uint_16)((*(sp)<<8) | *(sp+1)); sp+=2; blue = (png_uint_16)((*(sp)<<8) | *(sp+1)); sp+=2; if (red != green || red != blue) rgb_error |= 1; gray16 = (png_uint_16)((rc*red + gc*green + bc*blue)>>15); *(dp++) = (png_byte)((gray16>>8) & 0xff); *(dp++) = (png_byte)(gray16 & 0xff); *(dp++) = *(sp++); /* alpha */ *(dp++) = *(sp++); } } } } row_info->channels -= (png_byte)2; row_info->color_type &= ~PNG_COLOR_MASK_COLOR; row_info->pixel_depth = (png_byte)(row_info->channels * row_info->bit_depth); row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth, row_width); } return rgb_error; } #endif /* Build a grayscale palette. Palette is assumed to be 1 << bit_depth * large of png_color. This lets grayscale images be treated as * paletted. Most useful for gamma correction and simplification * of code. */ void PNGAPI png_build_grayscale_palette(int bit_depth, png_colorp palette) { int num_palette; int color_inc; int i; int v; png_debug(1, "in png_do_build_grayscale_palette"); if (palette == NULL) return; switch (bit_depth) { case 1: num_palette = 2; color_inc = 0xff; break; case 2: num_palette = 4; color_inc = 0x55; break; case 4: num_palette = 16; color_inc = 0x11; break; case 8: num_palette = 256; color_inc = 1; break; default: num_palette = 0; color_inc = 0; break; } for (i = 0, v = 0; i < num_palette; i++, v += color_inc) { palette[i].red = (png_byte)v; palette[i].green = (png_byte)v; palette[i].blue = (png_byte)v; } } #if defined(PNG_READ_BACKGROUND_SUPPORTED) /* Replace any alpha or transparency with the supplied background color. * "background" is already in the screen gamma, while "background_1" is * at a gamma of 1.0. Paletted files have already been taken care of. */ void /* PRIVATE */ png_do_background(png_row_infop row_info, png_bytep row, png_color_16p trans_color, png_color_16p background #if defined(PNG_READ_GAMMA_SUPPORTED) , png_color_16p background_1, png_bytep gamma_table, png_bytep gamma_from_1, png_bytep gamma_to_1, png_uint_16pp gamma_16, png_uint_16pp gamma_16_from_1, png_uint_16pp gamma_16_to_1, int gamma_shift #endif ) { png_bytep sp, dp; png_uint_32 i; png_uint_32 row_width=row_info->width; int shift; png_debug(1, "in png_do_background"); if (background != NULL && (!(row_info->color_type & PNG_COLOR_MASK_ALPHA) || (row_info->color_type != PNG_COLOR_TYPE_PALETTE && trans_color))) { switch (row_info->color_type) { case PNG_COLOR_TYPE_GRAY: { switch (row_info->bit_depth) { case 1: { sp = row; shift = 7; for (i = 0; i < row_width; i++) { if ((png_uint_16)((*sp >> shift) & 0x01) == trans_color->gray) { *sp &= (png_byte)((0x7f7f >> (7 - shift)) & 0xff); *sp |= (png_byte)(background->gray << shift); } if (!shift) { shift = 7; sp++; } else shift--; } break; } case 2: { #if defined(PNG_READ_GAMMA_SUPPORTED) if (gamma_table != NULL) { sp = row; shift = 6; for (i = 0; i < row_width; i++) { if ((png_uint_16)((*sp >> shift) & 0x03) == trans_color->gray) { *sp &= (png_byte)((0x3f3f >> (6 - shift)) & 0xff); *sp |= (png_byte)(background->gray << shift); } else { png_byte p = (png_byte)((*sp >> shift) & 0x03); png_byte g = (png_byte)((gamma_table [p | (p << 2) | (p << 4) | (p << 6)] >> 6) & 0x03); *sp &= (png_byte)((0x3f3f >> (6 - shift)) & 0xff); *sp |= (png_byte)(g << shift); } if (!shift) { shift = 6; sp++; } else shift -= 2; } } else #endif { sp = row; shift = 6; for (i = 0; i < row_width; i++) { if ((png_uint_16)((*sp >> shift) & 0x03) == trans_color->gray) { *sp &= (png_byte)((0x3f3f >> (6 - shift)) & 0xff); *sp |= (png_byte)(background->gray << shift); } if (!shift) { shift = 6; sp++; } else shift -= 2; } } break; } case 4: { #if defined(PNG_READ_GAMMA_SUPPORTED) if (gamma_table != NULL) { sp = row; shift = 4; for (i = 0; i < row_width; i++) { if ((png_uint_16)((*sp >> shift) & 0x0f) == trans_color->gray) { *sp &= (png_byte)((0xf0f >> (4 - shift)) & 0xff); *sp |= (png_byte)(background->gray << shift); } else { png_byte p = (png_byte)((*sp >> shift) & 0x0f); png_byte g = (png_byte)((gamma_table[p | (p << 4)] >> 4) & 0x0f); *sp &= (png_byte)((0xf0f >> (4 - shift)) & 0xff); *sp |= (png_byte)(g << shift); } if (!shift) { shift = 4; sp++; } else shift -= 4; } } else #endif { sp = row; shift = 4; for (i = 0; i < row_width; i++) { if ((png_uint_16)((*sp >> shift) & 0x0f) == trans_color->gray) { *sp &= (png_byte)((0xf0f >> (4 - shift)) & 0xff); *sp |= (png_byte)(background->gray << shift); } if (!shift) { shift = 4; sp++; } else shift -= 4; } } break; } case 8: { #if defined(PNG_READ_GAMMA_SUPPORTED) if (gamma_table != NULL) { sp = row; for (i = 0; i < row_width; i++, sp++) { if (*sp == trans_color->gray) { *sp = (png_byte)background->gray; } else { *sp = gamma_table[*sp]; } } } else #endif { sp = row; for (i = 0; i < row_width; i++, sp++) { if (*sp == trans_color->gray) { *sp = (png_byte)background->gray; } } } break; } case 16: { #if defined(PNG_READ_GAMMA_SUPPORTED) if (gamma_16 != NULL) { sp = row; for (i = 0; i < row_width; i++, sp += 2) { png_uint_16 v; v = (png_uint_16)(((*sp) << 8) + *(sp + 1)); if (v == trans_color->gray) { /* background is already in screen gamma */ *sp = (png_byte)((background->gray >> 8) & 0xff); *(sp + 1) = (png_byte)(background->gray & 0xff); } else { v = gamma_16[*(sp + 1) >> gamma_shift][*sp]; *sp = (png_byte)((v >> 8) & 0xff); *(sp + 1) = (png_byte)(v & 0xff); } } } else #endif { sp = row; for (i = 0; i < row_width; i++, sp += 2) { png_uint_16 v; v = (png_uint_16)(((*sp) << 8) + *(sp + 1)); if (v == trans_color->gray) { *sp = (png_byte)((background->gray >> 8) & 0xff); *(sp + 1) = (png_byte)(background->gray & 0xff); } } } break; } } break; } case PNG_COLOR_TYPE_RGB: { if (row_info->bit_depth == 8) { #if defined(PNG_READ_GAMMA_SUPPORTED) if (gamma_table != NULL) { sp = row; for (i = 0; i < row_width; i++, sp += 3) { if (*sp == trans_color->red && *(sp + 1) == trans_color->green && *(sp + 2) == trans_color->blue) { *sp = (png_byte)background->red; *(sp + 1) = (png_byte)background->green; *(sp + 2) = (png_byte)background->blue; } else { *sp = gamma_table[*sp]; *(sp + 1) = gamma_table[*(sp + 1)]; *(sp + 2) = gamma_table[*(sp + 2)]; } } } else #endif { sp = row; for (i = 0; i < row_width; i++, sp += 3) { if (*sp == trans_color->red && *(sp + 1) == trans_color->green && *(sp + 2) == trans_color->blue) { *sp = (png_byte)background->red; *(sp + 1) = (png_byte)background->green; *(sp + 2) = (png_byte)background->blue; } } } } else /* if (row_info->bit_depth == 16) */ { #if defined(PNG_READ_GAMMA_SUPPORTED) if (gamma_16 != NULL) { sp = row; for (i = 0; i < row_width; i++, sp += 6) { png_uint_16 r = (png_uint_16)(((*sp) << 8) + *(sp + 1)); png_uint_16 g = (png_uint_16)(((*(sp+2)) << 8) + *(sp+3)); png_uint_16 b = (png_uint_16)(((*(sp+4)) << 8) + *(sp+5)); if (r == trans_color->red && g == trans_color->green && b == trans_color->blue) { /* background is already in screen gamma */ *sp = (png_byte)((background->red >> 8) & 0xff); *(sp + 1) = (png_byte)(background->red & 0xff); *(sp + 2) = (png_byte)((background->green >> 8) & 0xff); *(sp + 3) = (png_byte)(background->green & 0xff); *(sp + 4) = (png_byte)((background->blue >> 8) & 0xff); *(sp + 5) = (png_byte)(background->blue & 0xff); } else { png_uint_16 v = gamma_16[*(sp + 1) >> gamma_shift][*sp]; *sp = (png_byte)((v >> 8) & 0xff); *(sp + 1) = (png_byte)(v & 0xff); v = gamma_16[*(sp + 3) >> gamma_shift][*(sp + 2)]; *(sp + 2) = (png_byte)((v >> 8) & 0xff); *(sp + 3) = (png_byte)(v & 0xff); v = gamma_16[*(sp + 5) >> gamma_shift][*(sp + 4)]; *(sp + 4) = (png_byte)((v >> 8) & 0xff); *(sp + 5) = (png_byte)(v & 0xff); } } } else #endif { sp = row; for (i = 0; i < row_width; i++, sp += 6) { png_uint_16 r = (png_uint_16)(((*sp) << 8) + *(sp+1)); png_uint_16 g = (png_uint_16)(((*(sp+2)) << 8) + *(sp+3)); png_uint_16 b = (png_uint_16)(((*(sp+4)) << 8) + *(sp+5)); if (r == trans_color->red && g == trans_color->green && b == trans_color->blue) { *sp = (png_byte)((background->red >> 8) & 0xff); *(sp + 1) = (png_byte)(background->red & 0xff); *(sp + 2) = (png_byte)((background->green >> 8) & 0xff); *(sp + 3) = (png_byte)(background->green & 0xff); *(sp + 4) = (png_byte)((background->blue >> 8) & 0xff); *(sp + 5) = (png_byte)(background->blue & 0xff); } } } } break; } case PNG_COLOR_TYPE_GRAY_ALPHA: { if (row_info->bit_depth == 8) { #if defined(PNG_READ_GAMMA_SUPPORTED) if (gamma_to_1 != NULL && gamma_from_1 != NULL && gamma_table != NULL) { sp = row; dp = row; for (i = 0; i < row_width; i++, sp += 2, dp++) { png_uint_16 a = *(sp + 1); if (a == 0xff) { *dp = gamma_table[*sp]; } else if (a == 0) { /* background is already in screen gamma */ *dp = (png_byte)background->gray; } else { png_byte v, w; v = gamma_to_1[*sp]; png_composite(w, v, a, background_1->gray); *dp = gamma_from_1[w]; } } } else #endif { sp = row; dp = row; for (i = 0; i < row_width; i++, sp += 2, dp++) { png_byte a = *(sp + 1); if (a == 0xff) { *dp = *sp; } #if defined(PNG_READ_GAMMA_SUPPORTED) else if (a == 0) { *dp = (png_byte)background->gray; } else { png_composite(*dp, *sp, a, background_1->gray); } #else *dp = (png_byte)background->gray; #endif } } } else /* if (png_ptr->bit_depth == 16) */ { #if defined(PNG_READ_GAMMA_SUPPORTED) if (gamma_16 != NULL && gamma_16_from_1 != NULL && gamma_16_to_1 != NULL) { sp = row; dp = row; for (i = 0; i < row_width; i++, sp += 4, dp += 2) { png_uint_16 a = (png_uint_16)(((*(sp+2)) << 8) + *(sp+3)); if (a == (png_uint_16)0xffff) { png_uint_16 v; v = gamma_16[*(sp + 1) >> gamma_shift][*sp]; *dp = (png_byte)((v >> 8) & 0xff); *(dp + 1) = (png_byte)(v & 0xff); } #if defined(PNG_READ_GAMMA_SUPPORTED) else if (a == 0) #else else #endif { /* background is already in screen gamma */ *dp = (png_byte)((background->gray >> 8) & 0xff); *(dp + 1) = (png_byte)(background->gray & 0xff); } #if defined(PNG_READ_GAMMA_SUPPORTED) else { png_uint_16 g, v, w; g = gamma_16_to_1[*(sp + 1) >> gamma_shift][*sp]; png_composite_16(v, g, a, background_1->gray); w = gamma_16_from_1[(v&0xff) >> gamma_shift][v >> 8]; *dp = (png_byte)((w >> 8) & 0xff); *(dp + 1) = (png_byte)(w & 0xff); } #endif } } else #endif { sp = row; dp = row; for (i = 0; i < row_width; i++, sp += 4, dp += 2) { png_uint_16 a = (png_uint_16)(((*(sp+2)) << 8) + *(sp+3)); if (a == (png_uint_16)0xffff) { png_memcpy(dp, sp, 2); } #if defined(PNG_READ_GAMMA_SUPPORTED) else if (a == 0) #else else #endif { *dp = (png_byte)((background->gray >> 8) & 0xff); *(dp + 1) = (png_byte)(background->gray & 0xff); } #if defined(PNG_READ_GAMMA_SUPPORTED) else { png_uint_16 g, v; g = (png_uint_16)(((*sp) << 8) + *(sp + 1)); png_composite_16(v, g, a, background_1->gray); *dp = (png_byte)((v >> 8) & 0xff); *(dp + 1) = (png_byte)(v & 0xff); } #endif } } } break; } case PNG_COLOR_TYPE_RGB_ALPHA: { if (row_info->bit_depth == 8) { #if defined(PNG_READ_GAMMA_SUPPORTED) if (gamma_to_1 != NULL && gamma_from_1 != NULL && gamma_table != NULL) { sp = row; dp = row; for (i = 0; i < row_width; i++, sp += 4, dp += 3) { png_byte a = *(sp + 3); if (a == 0xff) { *dp = gamma_table[*sp]; *(dp + 1) = gamma_table[*(sp + 1)]; *(dp + 2) = gamma_table[*(sp + 2)]; } else if (a == 0) { /* background is already in screen gamma */ *dp = (png_byte)background->red; *(dp + 1) = (png_byte)background->green; *(dp + 2) = (png_byte)background->blue; } else { png_byte v, w; v = gamma_to_1[*sp]; png_composite(w, v, a, background_1->red); *dp = gamma_from_1[w]; v = gamma_to_1[*(sp + 1)]; png_composite(w, v, a, background_1->green); *(dp + 1) = gamma_from_1[w]; v = gamma_to_1[*(sp + 2)]; png_composite(w, v, a, background_1->blue); *(dp + 2) = gamma_from_1[w]; } } } else #endif { sp = row; dp = row; for (i = 0; i < row_width; i++, sp += 4, dp += 3) { png_byte a = *(sp + 3); if (a == 0xff) { *dp = *sp; *(dp + 1) = *(sp + 1); *(dp + 2) = *(sp + 2); } else if (a == 0) { *dp = (png_byte)background->red; *(dp + 1) = (png_byte)background->green; *(dp + 2) = (png_byte)background->blue; } else { png_composite(*dp, *sp, a, background->red); png_composite(*(dp + 1), *(sp + 1), a, background->green); png_composite(*(dp + 2), *(sp + 2), a, background->blue); } } } } else /* if (row_info->bit_depth == 16) */ { #if defined(PNG_READ_GAMMA_SUPPORTED) if (gamma_16 != NULL && gamma_16_from_1 != NULL && gamma_16_to_1 != NULL) { sp = row; dp = row; for (i = 0; i < row_width; i++, sp += 8, dp += 6) { png_uint_16 a = (png_uint_16)(((png_uint_16)(*(sp + 6)) << 8) + (png_uint_16)(*(sp + 7))); if (a == (png_uint_16)0xffff) { png_uint_16 v; v = gamma_16[*(sp + 1) >> gamma_shift][*sp]; *dp = (png_byte)((v >> 8) & 0xff); *(dp + 1) = (png_byte)(v & 0xff); v = gamma_16[*(sp + 3) >> gamma_shift][*(sp + 2)]; *(dp + 2) = (png_byte)((v >> 8) & 0xff); *(dp + 3) = (png_byte)(v & 0xff); v = gamma_16[*(sp + 5) >> gamma_shift][*(sp + 4)]; *(dp + 4) = (png_byte)((v >> 8) & 0xff); *(dp + 5) = (png_byte)(v & 0xff); } else if (a == 0) { /* background is already in screen gamma */ *dp = (png_byte)((background->red >> 8) & 0xff); *(dp + 1) = (png_byte)(background->red & 0xff); *(dp + 2) = (png_byte)((background->green >> 8) & 0xff); *(dp + 3) = (png_byte)(background->green & 0xff); *(dp + 4) = (png_byte)((background->blue >> 8) & 0xff); *(dp + 5) = (png_byte)(background->blue & 0xff); } else { png_uint_16 v, w, x; v = gamma_16_to_1[*(sp + 1) >> gamma_shift][*sp]; png_composite_16(w, v, a, background_1->red); x = gamma_16_from_1[((w&0xff) >> gamma_shift)][w >> 8]; *dp = (png_byte)((x >> 8) & 0xff); *(dp + 1) = (png_byte)(x & 0xff); v = gamma_16_to_1[*(sp + 3) >> gamma_shift][*(sp + 2)]; png_composite_16(w, v, a, background_1->green); x = gamma_16_from_1[((w&0xff) >> gamma_shift)][w >> 8]; *(dp + 2) = (png_byte)((x >> 8) & 0xff); *(dp + 3) = (png_byte)(x & 0xff); v = gamma_16_to_1[*(sp + 5) >> gamma_shift][*(sp + 4)]; png_composite_16(w, v, a, background_1->blue); x = gamma_16_from_1[(w & 0xff) >> gamma_shift][w >> 8]; *(dp + 4) = (png_byte)((x >> 8) & 0xff); *(dp + 5) = (png_byte)(x & 0xff); } } } else #endif { sp = row; dp = row; for (i = 0; i < row_width; i++, sp += 8, dp += 6) { png_uint_16 a = (png_uint_16)(((png_uint_16)(*(sp + 6)) << 8) + (png_uint_16)(*(sp + 7))); if (a == (png_uint_16)0xffff) { png_memcpy(dp, sp, 6); } else if (a == 0) { *dp = (png_byte)((background->red >> 8) & 0xff); *(dp + 1) = (png_byte)(background->red & 0xff); *(dp + 2) = (png_byte)((background->green >> 8) & 0xff); *(dp + 3) = (png_byte)(background->green & 0xff); *(dp + 4) = (png_byte)((background->blue >> 8) & 0xff); *(dp + 5) = (png_byte)(background->blue & 0xff); } else { png_uint_16 v; png_uint_16 r = (png_uint_16)(((*sp) << 8) + *(sp + 1)); png_uint_16 g = (png_uint_16)(((*(sp + 2)) << 8) + *(sp + 3)); png_uint_16 b = (png_uint_16)(((*(sp + 4)) << 8) + *(sp + 5)); png_composite_16(v, r, a, background->red); *dp = (png_byte)((v >> 8) & 0xff); *(dp + 1) = (png_byte)(v & 0xff); png_composite_16(v, g, a, background->green); *(dp + 2) = (png_byte)((v >> 8) & 0xff); *(dp + 3) = (png_byte)(v & 0xff); png_composite_16(v, b, a, background->blue); *(dp + 4) = (png_byte)((v >> 8) & 0xff); *(dp + 5) = (png_byte)(v & 0xff); } } } } break; } } if (row_info->color_type & PNG_COLOR_MASK_ALPHA) { row_info->color_type &= ~PNG_COLOR_MASK_ALPHA; row_info->channels--; row_info->pixel_depth = (png_byte)(row_info->channels * row_info->bit_depth); row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth, row_width); } } } #endif #if defined(PNG_READ_GAMMA_SUPPORTED) /* Gamma correct the image, avoiding the alpha channel. Make sure * you do this after you deal with the transparency issue on grayscale * or RGB images. If your bit depth is 8, use gamma_table, if it * is 16, use gamma_16_table and gamma_shift. Build these with * build_gamma_table(). */ void /* PRIVATE */ png_do_gamma(png_row_infop row_info, png_bytep row, png_bytep gamma_table, png_uint_16pp gamma_16_table, int gamma_shift) { png_bytep sp; png_uint_32 i; png_uint_32 row_width=row_info->width; png_debug(1, "in png_do_gamma"); if ( ((row_info->bit_depth <= 8 && gamma_table != NULL) || (row_info->bit_depth == 16 && gamma_16_table != NULL))) { switch (row_info->color_type) { case PNG_COLOR_TYPE_RGB: { if (row_info->bit_depth == 8) { sp = row; for (i = 0; i < row_width; i++) { *sp = gamma_table[*sp]; sp++; *sp = gamma_table[*sp]; sp++; *sp = gamma_table[*sp]; sp++; } } else /* if (row_info->bit_depth == 16) */ { sp = row; for (i = 0; i < row_width; i++) { png_uint_16 v; v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp]; *sp = (png_byte)((v >> 8) & 0xff); *(sp + 1) = (png_byte)(v & 0xff); sp += 2; v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp]; *sp = (png_byte)((v >> 8) & 0xff); *(sp + 1) = (png_byte)(v & 0xff); sp += 2; v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp]; *sp = (png_byte)((v >> 8) & 0xff); *(sp + 1) = (png_byte)(v & 0xff); sp += 2; } } break; } case PNG_COLOR_TYPE_RGB_ALPHA: { if (row_info->bit_depth == 8) { sp = row; for (i = 0; i < row_width; i++) { *sp = gamma_table[*sp]; sp++; *sp = gamma_table[*sp]; sp++; *sp = gamma_table[*sp]; sp++; sp++; } } else /* if (row_info->bit_depth == 16) */ { sp = row; for (i = 0; i < row_width; i++) { png_uint_16 v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp]; *sp = (png_byte)((v >> 8) & 0xff); *(sp + 1) = (png_byte)(v & 0xff); sp += 2; v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp]; *sp = (png_byte)((v >> 8) & 0xff); *(sp + 1) = (png_byte)(v & 0xff); sp += 2; v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp]; *sp = (png_byte)((v >> 8) & 0xff); *(sp + 1) = (png_byte)(v & 0xff); sp += 4; } } break; } case PNG_COLOR_TYPE_GRAY_ALPHA: { if (row_info->bit_depth == 8) { sp = row; for (i = 0; i < row_width; i++) { *sp = gamma_table[*sp]; sp += 2; } } else /* if (row_info->bit_depth == 16) */ { sp = row; for (i = 0; i < row_width; i++) { png_uint_16 v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp]; *sp = (png_byte)((v >> 8) & 0xff); *(sp + 1) = (png_byte)(v & 0xff); sp += 4; } } break; } case PNG_COLOR_TYPE_GRAY: { if (row_info->bit_depth == 2) { sp = row; for (i = 0; i < row_width; i += 4) { int a = *sp & 0xc0; int b = *sp & 0x30; int c = *sp & 0x0c; int d = *sp & 0x03; *sp = (png_byte)( ((((int)gamma_table[a|(a>>2)|(a>>4)|(a>>6)]) ) & 0xc0)| ((((int)gamma_table[(b<<2)|b|(b>>2)|(b>>4)])>>2) & 0x30)| ((((int)gamma_table[(c<<4)|(c<<2)|c|(c>>2)])>>4) & 0x0c)| ((((int)gamma_table[(d<<6)|(d<<4)|(d<<2)|d])>>6) )); sp++; } } if (row_info->bit_depth == 4) { sp = row; for (i = 0; i < row_width; i += 2) { int msb = *sp & 0xf0; int lsb = *sp & 0x0f; *sp = (png_byte)((((int)gamma_table[msb | (msb >> 4)]) & 0xf0) | (((int)gamma_table[(lsb << 4) | lsb]) >> 4)); sp++; } } else if (row_info->bit_depth == 8) { sp = row; for (i = 0; i < row_width; i++) { *sp = gamma_table[*sp]; sp++; } } else if (row_info->bit_depth == 16) { sp = row; for (i = 0; i < row_width; i++) { png_uint_16 v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp]; *sp = (png_byte)((v >> 8) & 0xff); *(sp + 1) = (png_byte)(v & 0xff); sp += 2; } } break; } } } } #endif #if defined(PNG_READ_EXPAND_SUPPORTED) /* Expands a palette row to an RGB or RGBA row depending * upon whether you supply trans and num_trans. */ void /* PRIVATE */ png_do_expand_palette(png_row_infop row_info, png_bytep row, png_colorp palette, png_bytep trans, int num_trans) { int shift, value; png_bytep sp, dp; png_uint_32 i; png_uint_32 row_width=row_info->width; png_debug(1, "in png_do_expand_palette"); if ( row_info->color_type == PNG_COLOR_TYPE_PALETTE) { if (row_info->bit_depth < 8) { switch (row_info->bit_depth) { case 1: { sp = row + (png_size_t)((row_width - 1) >> 3); dp = row + (png_size_t)row_width - 1; shift = 7 - (int)((row_width + 7) & 0x07); for (i = 0; i < row_width; i++) { if ((*sp >> shift) & 0x01) *dp = 1; else *dp = 0; if (shift == 7) { shift = 0; sp--; } else shift++; dp--; } break; } case 2: { sp = row + (png_size_t)((row_width - 1) >> 2); dp = row + (png_size_t)row_width - 1; shift = (int)((3 - ((row_width + 3) & 0x03)) << 1); for (i = 0; i < row_width; i++) { value = (*sp >> shift) & 0x03; *dp = (png_byte)value; if (shift == 6) { shift = 0; sp--; } else shift += 2; dp--; } break; } case 4: { sp = row + (png_size_t)((row_width - 1) >> 1); dp = row + (png_size_t)row_width - 1; shift = (int)((row_width & 0x01) << 2); for (i = 0; i < row_width; i++) { value = (*sp >> shift) & 0x0f; *dp = (png_byte)value; if (shift == 4) { shift = 0; sp--; } else shift += 4; dp--; } break; } } row_info->bit_depth = 8; row_info->pixel_depth = 8; row_info->rowbytes = row_width; } switch (row_info->bit_depth) { case 8: { if (trans != NULL) { sp = row + (png_size_t)row_width - 1; dp = row + (png_size_t)(row_width << 2) - 1; for (i = 0; i < row_width; i++) { if ((int)(*sp) >= num_trans) *dp-- = 0xff; else *dp-- = trans[*sp]; *dp-- = palette[*sp].blue; *dp-- = palette[*sp].green; *dp-- = palette[*sp].red; sp--; } row_info->bit_depth = 8; row_info->pixel_depth = 32; row_info->rowbytes = row_width * 4; row_info->color_type = 6; row_info->channels = 4; } else { sp = row + (png_size_t)row_width - 1; dp = row + (png_size_t)(row_width * 3) - 1; for (i = 0; i < row_width; i++) { *dp-- = palette[*sp].blue; *dp-- = palette[*sp].green; *dp-- = palette[*sp].red; sp--; } row_info->bit_depth = 8; row_info->pixel_depth = 24; row_info->rowbytes = row_width * 3; row_info->color_type = 2; row_info->channels = 3; } break; } } } } /* If the bit depth < 8, it is expanded to 8. Also, if the already * expanded transparency value is supplied, an alpha channel is built. */ void /* PRIVATE */ png_do_expand(png_row_infop row_info, png_bytep row, png_color_16p trans_value) { int shift, value; png_bytep sp, dp; png_uint_32 i; png_uint_32 row_width=row_info->width; png_debug(1, "in png_do_expand"); { if (row_info->color_type == PNG_COLOR_TYPE_GRAY) { png_uint_16 gray = (png_uint_16)(trans_value ? trans_value->gray : 0); if (row_info->bit_depth < 8) { switch (row_info->bit_depth) { case 1: { gray = (png_uint_16)((gray&0x01)*0xff); sp = row + (png_size_t)((row_width - 1) >> 3); dp = row + (png_size_t)row_width - 1; shift = 7 - (int)((row_width + 7) & 0x07); for (i = 0; i < row_width; i++) { if ((*sp >> shift) & 0x01) *dp = 0xff; else *dp = 0; if (shift == 7) { shift = 0; sp--; } else shift++; dp--; } break; } case 2: { gray = (png_uint_16)((gray&0x03)*0x55); sp = row + (png_size_t)((row_width - 1) >> 2); dp = row + (png_size_t)row_width - 1; shift = (int)((3 - ((row_width + 3) & 0x03)) << 1); for (i = 0; i < row_width; i++) { value = (*sp >> shift) & 0x03; *dp = (png_byte)(value | (value << 2) | (value << 4) | (value << 6)); if (shift == 6) { shift = 0; sp--; } else shift += 2; dp--; } break; } case 4: { gray = (png_uint_16)((gray&0x0f)*0x11); sp = row + (png_size_t)((row_width - 1) >> 1); dp = row + (png_size_t)row_width - 1; shift = (int)((1 - ((row_width + 1) & 0x01)) << 2); for (i = 0; i < row_width; i++) { value = (*sp >> shift) & 0x0f; *dp = (png_byte)(value | (value << 4)); if (shift == 4) { shift = 0; sp--; } else shift = 4; dp--; } break; } } row_info->bit_depth = 8; row_info->pixel_depth = 8; row_info->rowbytes = row_width; } if (trans_value != NULL) { if (row_info->bit_depth == 8) { gray = gray & 0xff; sp = row + (png_size_t)row_width - 1; dp = row + (png_size_t)(row_width << 1) - 1; for (i = 0; i < row_width; i++) { if (*sp == gray) *dp-- = 0; else *dp-- = 0xff; *dp-- = *sp--; } } else if (row_info->bit_depth == 16) { png_byte gray_high = (gray >> 8) & 0xff; png_byte gray_low = gray & 0xff; sp = row + row_info->rowbytes - 1; dp = row + (row_info->rowbytes << 1) - 1; for (i = 0; i < row_width; i++) { if (*(sp - 1) == gray_high && *(sp) == gray_low) { *dp-- = 0; *dp-- = 0; } else { *dp-- = 0xff; *dp-- = 0xff; } *dp-- = *sp--; *dp-- = *sp--; } } row_info->color_type = PNG_COLOR_TYPE_GRAY_ALPHA; row_info->channels = 2; row_info->pixel_depth = (png_byte)(row_info->bit_depth << 1); row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth, row_width); } } else if (row_info->color_type == PNG_COLOR_TYPE_RGB && trans_value) { if (row_info->bit_depth == 8) { png_byte red = trans_value->red & 0xff; png_byte green = trans_value->green & 0xff; png_byte blue = trans_value->blue & 0xff; sp = row + (png_size_t)row_info->rowbytes - 1; dp = row + (png_size_t)(row_width << 2) - 1; for (i = 0; i < row_width; i++) { if (*(sp - 2) == red && *(sp - 1) == green && *(sp) == blue) *dp-- = 0; else *dp-- = 0xff; *dp-- = *sp--; *dp-- = *sp--; *dp-- = *sp--; } } else if (row_info->bit_depth == 16) { png_byte red_high = (trans_value->red >> 8) & 0xff; png_byte green_high = (trans_value->green >> 8) & 0xff; png_byte blue_high = (trans_value->blue >> 8) & 0xff; png_byte red_low = trans_value->red & 0xff; png_byte green_low = trans_value->green & 0xff; png_byte blue_low = trans_value->blue & 0xff; sp = row + row_info->rowbytes - 1; dp = row + (png_size_t)(row_width << 3) - 1; for (i = 0; i < row_width; i++) { if (*(sp - 5) == red_high && *(sp - 4) == red_low && *(sp - 3) == green_high && *(sp - 2) == green_low && *(sp - 1) == blue_high && *(sp ) == blue_low) { *dp-- = 0; *dp-- = 0; } else { *dp-- = 0xff; *dp-- = 0xff; } *dp-- = *sp--; *dp-- = *sp--; *dp-- = *sp--; *dp-- = *sp--; *dp-- = *sp--; *dp-- = *sp--; } } row_info->color_type = PNG_COLOR_TYPE_RGB_ALPHA; row_info->channels = 4; row_info->pixel_depth = (png_byte)(row_info->bit_depth << 2); row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth, row_width); } } } #endif #if defined(PNG_READ_DITHER_SUPPORTED) void /* PRIVATE */ png_do_dither(png_row_infop row_info, png_bytep row, png_bytep palette_lookup, png_bytep dither_lookup) { png_bytep sp, dp; png_uint_32 i; png_uint_32 row_width=row_info->width; png_debug(1, "in png_do_dither"); { if (row_info->color_type == PNG_COLOR_TYPE_RGB && palette_lookup && row_info->bit_depth == 8) { int r, g, b, p; sp = row; dp = row; for (i = 0; i < row_width; i++) { r = *sp++; g = *sp++; b = *sp++; /* this looks real messy, but the compiler will reduce it down to a reasonable formula. For example, with 5 bits per color, we get: p = (((r >> 3) & 0x1f) << 10) | (((g >> 3) & 0x1f) << 5) | ((b >> 3) & 0x1f); */ p = (((r >> (8 - PNG_DITHER_RED_BITS)) & ((1 << PNG_DITHER_RED_BITS) - 1)) << (PNG_DITHER_GREEN_BITS + PNG_DITHER_BLUE_BITS)) | (((g >> (8 - PNG_DITHER_GREEN_BITS)) & ((1 << PNG_DITHER_GREEN_BITS) - 1)) << (PNG_DITHER_BLUE_BITS)) | ((b >> (8 - PNG_DITHER_BLUE_BITS)) & ((1 << PNG_DITHER_BLUE_BITS) - 1)); *dp++ = palette_lookup[p]; } row_info->color_type = PNG_COLOR_TYPE_PALETTE; row_info->channels = 1; row_info->pixel_depth = row_info->bit_depth; row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth, row_width); } else if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA && palette_lookup != NULL && row_info->bit_depth == 8) { int r, g, b, p; sp = row; dp = row; for (i = 0; i < row_width; i++) { r = *sp++; g = *sp++; b = *sp++; sp++; p = (((r >> (8 - PNG_DITHER_RED_BITS)) & ((1 << PNG_DITHER_RED_BITS) - 1)) << (PNG_DITHER_GREEN_BITS + PNG_DITHER_BLUE_BITS)) | (((g >> (8 - PNG_DITHER_GREEN_BITS)) & ((1 << PNG_DITHER_GREEN_BITS) - 1)) << (PNG_DITHER_BLUE_BITS)) | ((b >> (8 - PNG_DITHER_BLUE_BITS)) & ((1 << PNG_DITHER_BLUE_BITS) - 1)); *dp++ = palette_lookup[p]; } row_info->color_type = PNG_COLOR_TYPE_PALETTE; row_info->channels = 1; row_info->pixel_depth = row_info->bit_depth; row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth, row_width); } else if (row_info->color_type == PNG_COLOR_TYPE_PALETTE && dither_lookup && row_info->bit_depth == 8) { sp = row; for (i = 0; i < row_width; i++, sp++) { *sp = dither_lookup[*sp]; } } } } #endif #ifdef PNG_FLOATING_POINT_SUPPORTED #if defined(PNG_READ_GAMMA_SUPPORTED) static PNG_CONST int png_gamma_shift[] = {0x10, 0x21, 0x42, 0x84, 0x110, 0x248, 0x550, 0xff0, 0x00}; /* We build the 8- or 16-bit gamma tables here. Note that for 16-bit * tables, we don't make a full table if we are reducing to 8-bit in * the future. Note also how the gamma_16 tables are segmented so that * we don't need to allocate > 64K chunks for a full 16-bit table. */ void /* PRIVATE */ png_build_gamma_table(png_structp png_ptr) { png_debug(1, "in png_build_gamma_table"); if (png_ptr->bit_depth <= 8) { int i; double g; if (png_ptr->screen_gamma > .000001) g = 1.0 / (png_ptr->gamma * png_ptr->screen_gamma); else g = 1.0; png_ptr->gamma_table = (png_bytep)png_malloc(png_ptr, (png_uint_32)256); for (i = 0; i < 256; i++) { png_ptr->gamma_table[i] = (png_byte)(pow((double)i / 255.0, g) * 255.0 + .5); } #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \ defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) if (png_ptr->transformations & ((PNG_BACKGROUND) | PNG_RGB_TO_GRAY)) { g = 1.0 / (png_ptr->gamma); png_ptr->gamma_to_1 = (png_bytep)png_malloc(png_ptr, (png_uint_32)256); for (i = 0; i < 256; i++) { png_ptr->gamma_to_1[i] = (png_byte)(pow((double)i / 255.0, g) * 255.0 + .5); } png_ptr->gamma_from_1 = (png_bytep)png_malloc(png_ptr, (png_uint_32)256); if (png_ptr->screen_gamma > 0.000001) g = 1.0 / png_ptr->screen_gamma; else g = png_ptr->gamma; /* probably doing rgb_to_gray */ for (i = 0; i < 256; i++) { png_ptr->gamma_from_1[i] = (png_byte)(pow((double)i / 255.0, g) * 255.0 + .5); } } #endif /* PNG_READ_BACKGROUND_SUPPORTED || PNG_RGB_TO_GRAY_SUPPORTED */ } else { double g; int i, j, shift, num; int sig_bit; png_uint_32 ig; if (png_ptr->color_type & PNG_COLOR_MASK_COLOR) { sig_bit = (int)png_ptr->sig_bit.red; if ((int)png_ptr->sig_bit.green > sig_bit) sig_bit = png_ptr->sig_bit.green; if ((int)png_ptr->sig_bit.blue > sig_bit) sig_bit = png_ptr->sig_bit.blue; } else { sig_bit = (int)png_ptr->sig_bit.gray; } if (sig_bit > 0) shift = 16 - sig_bit; else shift = 0; if (png_ptr->transformations & PNG_16_TO_8) { if (shift < (16 - PNG_MAX_GAMMA_8)) shift = (16 - PNG_MAX_GAMMA_8); } if (shift > 8) shift = 8; if (shift < 0) shift = 0; png_ptr->gamma_shift = (png_byte)shift; num = (1 << (8 - shift)); if (png_ptr->screen_gamma > .000001) g = 1.0 / (png_ptr->gamma * png_ptr->screen_gamma); else g = 1.0; #ifdef PNG_CALLOC_SUPPORTED png_ptr->gamma_16_table = (png_uint_16pp)png_calloc(png_ptr, (png_uint_32)(num * png_sizeof(png_uint_16p))); #else png_ptr->gamma_16_table = (png_uint_16pp)png_malloc(png_ptr, (png_uint_32)(num * png_sizeof(png_uint_16p))); png_memset(png_ptr->gamma_16_table, 0, num * png_sizeof(png_uint_16p)); #endif if (png_ptr->transformations & (PNG_16_TO_8 | PNG_BACKGROUND)) { double fin, fout; png_uint_32 last, max; for (i = 0; i < num; i++) { png_ptr->gamma_16_table[i] = (png_uint_16p)png_malloc(png_ptr, (png_uint_32)(256 * png_sizeof(png_uint_16))); } g = 1.0 / g; last = 0; for (i = 0; i < 256; i++) { fout = ((double)i + 0.5) / 256.0; fin = pow(fout, g); max = (png_uint_32)(fin * (double)((png_uint_32)num << 8)); while (last <= max) { png_ptr->gamma_16_table[(int)(last & (0xff >> shift))] [(int)(last >> (8 - shift))] = (png_uint_16)( (png_uint_16)i | ((png_uint_16)i << 8)); last++; } } while (last < ((png_uint_32)num << 8)) { png_ptr->gamma_16_table[(int)(last & (0xff >> shift))] [(int)(last >> (8 - shift))] = (png_uint_16)65535L; last++; } } else { for (i = 0; i < num; i++) { png_ptr->gamma_16_table[i] = (png_uint_16p)png_malloc(png_ptr, (png_uint_32)(256 * png_sizeof(png_uint_16))); ig = (((png_uint_32)i * (png_uint_32)png_gamma_shift[shift]) >> 4); for (j = 0; j < 256; j++) { png_ptr->gamma_16_table[i][j] = (png_uint_16)(pow((double)(ig + ((png_uint_32)j << 8)) / 65535.0, g) * 65535.0 + .5); } } } #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \ defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) if (png_ptr->transformations & (PNG_BACKGROUND | PNG_RGB_TO_GRAY)) { g = 1.0 / (png_ptr->gamma); #ifdef PNG_CALLOC_SUPPORTED png_ptr->gamma_16_to_1 = (png_uint_16pp)png_calloc(png_ptr, (png_uint_32)(num * png_sizeof(png_uint_16p ))); #else png_ptr->gamma_16_to_1 = (png_uint_16pp)png_malloc(png_ptr, (png_uint_32)(num * png_sizeof(png_uint_16p ))); png_memset(png_ptr->gamma_16_to_1, 0, num * png_sizeof(png_uint_16p)); #endif for (i = 0; i < num; i++) { png_ptr->gamma_16_to_1[i] = (png_uint_16p)png_malloc(png_ptr, (png_uint_32)(256 * png_sizeof(png_uint_16))); ig = (((png_uint_32)i * (png_uint_32)png_gamma_shift[shift]) >> 4); for (j = 0; j < 256; j++) { png_ptr->gamma_16_to_1[i][j] = (png_uint_16)(pow((double)(ig + ((png_uint_32)j << 8)) / 65535.0, g) * 65535.0 + .5); } } if (png_ptr->screen_gamma > 0.000001) g = 1.0 / png_ptr->screen_gamma; else g = png_ptr->gamma; /* probably doing rgb_to_gray */ #ifdef PNG_CALLOC_SUPPORTED png_ptr->gamma_16_from_1 = (png_uint_16pp)png_calloc(png_ptr, (png_uint_32)(num * png_sizeof(png_uint_16p))); #else png_ptr->gamma_16_from_1 = (png_uint_16pp)png_malloc(png_ptr, (png_uint_32)(num * png_sizeof(png_uint_16p))); png_memset(png_ptr->gamma_16_from_1, 0, num * png_sizeof(png_uint_16p)); #endif for (i = 0; i < num; i++) { png_ptr->gamma_16_from_1[i] = (png_uint_16p)png_malloc(png_ptr, (png_uint_32)(256 * png_sizeof(png_uint_16))); ig = (((png_uint_32)i * (png_uint_32)png_gamma_shift[shift]) >> 4); for (j = 0; j < 256; j++) { png_ptr->gamma_16_from_1[i][j] = (png_uint_16)(pow((double)(ig + ((png_uint_32)j << 8)) / 65535.0, g) * 65535.0 + .5); } } } #endif /* PNG_READ_BACKGROUND_SUPPORTED || PNG_RGB_TO_GRAY_SUPPORTED */ } } #endif /* To do: install integer version of png_build_gamma_table here */ #endif #if defined(PNG_MNG_FEATURES_SUPPORTED) /* undoes intrapixel differencing */ void /* PRIVATE */ png_do_read_intrapixel(png_row_infop row_info, png_bytep row) { png_debug(1, "in png_do_read_intrapixel"); if ( (row_info->color_type & PNG_COLOR_MASK_COLOR)) { int bytes_per_pixel; png_uint_32 row_width = row_info->width; if (row_info->bit_depth == 8) { png_bytep rp; png_uint_32 i; if (row_info->color_type == PNG_COLOR_TYPE_RGB) bytes_per_pixel = 3; else if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA) bytes_per_pixel = 4; else return; for (i = 0, rp = row; i < row_width; i++, rp += bytes_per_pixel) { *(rp) = (png_byte)((256 + *rp + *(rp+1))&0xff); *(rp+2) = (png_byte)((256 + *(rp+2) + *(rp+1))&0xff); } } else if (row_info->bit_depth == 16) { png_bytep rp; png_uint_32 i; if (row_info->color_type == PNG_COLOR_TYPE_RGB) bytes_per_pixel = 6; else if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA) bytes_per_pixel = 8; else return; for (i = 0, rp = row; i < row_width; i++, rp += bytes_per_pixel) { png_uint_32 s0 = (*(rp ) << 8) | *(rp + 1); png_uint_32 s1 = (*(rp + 2) << 8) | *(rp + 3); png_uint_32 s2 = (*(rp + 4) << 8) | *(rp + 5); png_uint_32 red = (png_uint_32)((s0 + s1 + 65536L) & 0xffffL); png_uint_32 blue = (png_uint_32)((s2 + s1 + 65536L) & 0xffffL); *(rp ) = (png_byte)((red >> 8) & 0xff); *(rp+1) = (png_byte)(red & 0xff); *(rp+4) = (png_byte)((blue >> 8) & 0xff); *(rp+5) = (png_byte)(blue & 0xff); } } } } #endif /* PNG_MNG_FEATURES_SUPPORTED */ #endif /* PNG_READ_SUPPORTED */