Add SSSE3 and SSE2 optimized png filter functions

This commit is contained in:
Matt Sarett 2016-02-15 14:41:27 -05:00
parent 08bd7654bc
commit 9c946e22fc
3 changed files with 326 additions and 0 deletions

View File

@ -0,0 +1,261 @@
/* filter_sse2_intrinsics.c - SSE2 optimized filter functions
*
* Copyright (c) 2016 Google, Inc.
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*/
#include "../pngpriv.h"
#ifdef PNG_READ_SUPPORTED
#if PNG_INTEL_SSE2_OPT > 0
#if PNG_INTEL_SSE2_OPT == 1
#include <emmintrin.h>
#elif PNG_INTEL_SSE2_OPT == 2
#include <tmmintrin.h>
#endif
// Functions in this file look at most 3 pixels (a,b,c) to predict the 4th (d).
// They're positioned like this:
// prev: c b
// row: a d
// The Sub filter predicts d=a, Avg d=(a+b)/2, and Paeth predicts d to be
// whichever of a, b, or c is closest to p=a+b-c.
// Up also exists, predicting d=b. But there is not need to optimize Up
// because the compiler will vectorize it for us.
void png_read_filter_row_sub3_sse2(png_row_infop row_info, png_bytep row,
png_const_bytep prev)
{
// The Sub filter predicts each pixel as the previous pixel, a.
// There is no pixel to the left of the first pixel. It's encoded directly.
// That works with our main loop if we just say that left pixel was zero.
__m128i a, d = _mm_setzero_si128();
int rb = row_info->rowbytes;
while (rb > 0) {
a = d; memcpy(&d, row, 3);
d = _mm_add_epi8(d, a);
memcpy(row, &d, 3);
row += 3;
rb -= 3;
}
}
void png_read_filter_row_sub4_sse2(png_row_infop row_info, png_bytep row,
png_const_bytep prev)
{
// The Sub filter predicts each pixel as the previous pixel, a.
// There is no pixel to the left of the first pixel. It's encoded directly.
// That works with our main loop if we just say that left pixel was zero.
__m128i a, d = _mm_setzero_si128();
int rb = row_info->rowbytes;
while (rb > 0) {
a = d; memcpy(&d, row, 4);
d = _mm_add_epi8(d, a);
memcpy(row, &d, 4);
row += 4;
rb -= 4;
}
}
void png_read_filter_row_avg3_sse2(png_row_infop row_info, png_bytep row,
png_const_bytep prev)
{
// The Avg filter predicts each pixel as the (truncated) average of a and b.
// There's no pixel to the left of the first pixel. Luckily, it's
// predicted to be half of the pixel above it. So again, this works
// perfectly with our loop if we make sure a starts at zero.
const __m128i zero = _mm_setzero_si128();
__m128i b;
__m128i a, d = zero;
int rb = row_info->rowbytes;
while (rb > 0) {
memcpy(&b, prev, 3);
a = d; memcpy(&d, row, 3);
// PNG requires a truncating average here, so sadly we can't just use
// _mm_avg_epu8...
__m128i avg = _mm_avg_epu8(a,b);
// ...but we can fix it up by subtracting off 1 if it rounded up.
avg = _mm_sub_epi8(avg, _mm_and_si128(_mm_xor_si128(a,b),
_mm_set1_epi8(1)));
d = _mm_add_epi8(d, avg);
memcpy(row, &d, 3);
prev += 3;
row += 3;
rb -= 3;
}
}
void png_read_filter_row_avg4_sse2(png_row_infop row_info, png_bytep row,
png_const_bytep prev)
{
// The Avg filter predicts each pixel as the (truncated) average of a and b.
// There's no pixel to the left of the first pixel. Luckily, it's
// predicted to be half of the pixel above it. So again, this works
// perfectly with our loop if we make sure a starts at zero.
const __m128i zero = _mm_setzero_si128();
__m128i b;
__m128i a, d = zero;
int rb = row_info->rowbytes;
while (rb > 0) {
memcpy(&b, prev, 4);
a = d; memcpy(&d, row, 4);
// PNG requires a truncating average here, so sadly we can't just use
// _mm_avg_epu8...
__m128i avg = _mm_avg_epu8(a,b);
// ...but we can fix it up by subtracting off 1 if it rounded up.
avg = _mm_sub_epi8(avg, _mm_and_si128(_mm_xor_si128(a,b),
_mm_set1_epi8(1)));
d = _mm_add_epi8(d, avg);
memcpy(row, &d, 4);
prev += 4;
row += 4;
rb -= 4;
}
}
// Returns |x| for 16-bit lanes.
static __m128i abs_i16(__m128i x) {
#if PNG_INTEL_SSE2_OPT >= 2
return _mm_abs_epi16(x);
#else
// Read this all as, return x<0 ? -x : x.
// To negate two's complement, you flip all the bits then add 1.
__m128i is_negative = _mm_cmplt_epi16(x, _mm_setzero_si128());
// Flip negative lanes.
x = _mm_xor_si128(x, is_negative);
// +1 to negative lanes, else +0.
x = _mm_add_epi16(x, _mm_srli_epi16(is_negative, 15));
return x;
#endif
}
// Bytewise c ? t : e.
static __m128i if_then_else(__m128i c, __m128i t, __m128i e) {
return _mm_or_si128(_mm_and_si128(c, t), _mm_andnot_si128(c, e));
}
void png_read_filter_row_paeth3_sse2(png_row_infop row_info, png_bytep row,
png_const_bytep prev)
{
// Paeth tries to predict pixel d using the pixel to the left of it, a,
// and two pixels from the previous row, b and c:
// prev: c b
// row: a d
// The Paeth function predicts d to be whichever of a, b, or c is nearest to
// p=a+b-c. The first pixel has no left context, and so uses an Up filter,
// p = b. This works naturally with our main loop's p = a+b-c if we force a
// and c to zero. Here we zero b and d, which become c and a respectively
// at the start of the loop.
const __m128i zero = _mm_setzero_si128();
__m128i c, b = zero,
a, d = zero;
int rb = row_info->rowbytes;
while (rb > 0) {
// It's easiest to do this math (particularly, deal with pc) with 16-bit
// intermediates.
memcpy(&b, prev, 3);
memcpy(&d, row, 3);
c = b; b = _mm_unpacklo_epi8(b, zero);
a = d; d = _mm_unpacklo_epi8(d, zero);
__m128i pa = _mm_sub_epi16(b,c),
// (p-a) == (a+b-c - a) == (b-c)
pb = _mm_sub_epi16(a,c),
// (p-b) == (a+b-c - b) == (a-c)
pc = _mm_add_epi16(pa,pb);
// (p-c) == (a+b-c - c) == (a+b-c-c) == (b-c)+(a-c)
pa = abs_i16(pa); // |p-a|
pb = abs_i16(pb); // |p-b|
pc = abs_i16(pc); // |p-c|
__m128i smallest = _mm_min_epi16(pc, _mm_min_epi16(pa, pb));
// Paeth breaks ties favoring a over b over c.
__m128i nearest = if_then_else(_mm_cmpeq_epi16(smallest, pa), a,
if_then_else(_mm_cmpeq_epi16(smallest, pb), b,
c));
// Note `_epi8`: we need addition to wrap modulo 255.
d = _mm_add_epi8(d, nearest);
__m128i r = _mm_packus_epi16(d,d);
memcpy(row, &r, 3);
prev += 3;
row += 3;
rb -= 3;
}
}
void png_read_filter_row_paeth4_sse2(png_row_infop row_info, png_bytep row,
png_const_bytep prev)
{
// Paeth tries to predict pixel d using the pixel to the left of it, a,
// and two pixels from the previous row, b and c:
// prev: c b
// row: a d
// The Paeth function predicts d to be whichever of a, b, or c is nearest to
// p=a+b-c. The first pixel has no left context, and so uses an Up filter,
// p = b. This works naturally with our main loop's p = a+b-c if we force a
// and c to zero. Here we zero b and d, which become c and a respectively
// at the start of the loop.
const __m128i zero = _mm_setzero_si128();
__m128i c, b = zero,
a, d = zero;
int rb = row_info->rowbytes;
while (rb > 0) {
// It's easiest to do this math (particularly, deal with pc) with 16-bit
// intermediates.
memcpy(&b, prev, 4);
memcpy(&d, row, 4);
c = b; b = _mm_unpacklo_epi8(b, zero);
a = d; d = _mm_unpacklo_epi8(d, zero);
__m128i pa = _mm_sub_epi16(b,c),
// (p-a) == (a+b-c - a) == (b-c)
pb = _mm_sub_epi16(a,c),
// (p-b) == (a+b-c - b) == (a-c)
pc = _mm_add_epi16(pa,pb);
// (p-c) == (a+b-c - c) == (a+b-c-c) == (b-c)+(a-c)
pa = abs_i16(pa); // |p-a|
pb = abs_i16(pb); // |p-b|
pc = abs_i16(pc); // |p-c|
__m128i smallest = _mm_min_epi16(pc, _mm_min_epi16(pa, pb));
// Paeth breaks ties favoring a over b over c.
__m128i nearest = if_then_else(_mm_cmpeq_epi16(smallest, pa), a,
if_then_else(_mm_cmpeq_epi16(smallest, pb), b,
c));
// Note `_epi8`: we need addition to wrap modulo 255.
d = _mm_add_epi8(d, nearest);
__m128i r = _mm_packus_epi16(d,d);
memcpy(row, &r, 4);
prev += 4;
row += 4;
rb -= 4;
}
}
#endif /* PNG_INTEL_SSE2_OPT > 0 */
#endif /* READ */

38
intel/intel_init.c Normal file
View File

@ -0,0 +1,38 @@
/* intel_init.c - SSE2 optimized filter functions
*
* Copyright (c) 2016 Google, Inc.
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*/
#include "../pngpriv.h"
#ifdef PNG_READ_SUPPORTED
#if PNG_INTEL_SSE2_OPT > 0
void
png_init_filter_functions_sse2(png_structp pp, unsigned int bpp)
{
if (bpp == 3)
{
pp->read_filter[PNG_FILTER_VALUE_SUB-1] = png_read_filter_row_sub3_sse2;
pp->read_filter[PNG_FILTER_VALUE_AVG-1] = png_read_filter_row_avg3_sse2;
pp->read_filter[PNG_FILTER_VALUE_PAETH-1] =
png_read_filter_row_paeth3_sse2;
}
else if (bpp == 4)
{
pp->read_filter[PNG_FILTER_VALUE_SUB-1] = png_read_filter_row_sub4_sse2;
pp->read_filter[PNG_FILTER_VALUE_AVG-1] = png_read_filter_row_avg4_sse2;
pp->read_filter[PNG_FILTER_VALUE_PAETH-1] =
png_read_filter_row_paeth4_sse2;
}
// No need optimize PNG_FILTER_VALUE_UP. The compiler should autovectorize.
}
#endif /* PNG_INTEL_SSE2_OPT > 0 */
#endif /* PNG_READ_SUPPORTED */

View File

@ -182,6 +182,18 @@
# endif # endif
#endif /* PNG_ARM_NEON_OPT > 0 */ #endif /* PNG_ARM_NEON_OPT > 0 */
#ifndef PNG_INTEL_SSE2_OPT
# if defined(__SSE3__) || defined(__SSSE3__)
# define PNG_INTEL_SSE2_OPT 2
# elif defined(__SSE2__)
# define PNG_INTEL_SSE2_OPT 1
# endif
#endif
#if PNG_INTEL_SSE2_OPT > 0
# define PNG_FILTER_OPTIMIZATIONS png_init_filter_functions_sse2
#endif
/* Is this a build of a DLL where compilation of the object modules requires /* Is this a build of a DLL where compilation of the object modules requires
* different preprocessor settings to those required for a simple library? If * different preprocessor settings to those required for a simple library? If
* so PNG_BUILD_DLL must be set. * so PNG_BUILD_DLL must be set.
@ -1189,6 +1201,19 @@ PNG_INTERNAL_FUNCTION(void,png_read_filter_row_paeth3_neon,(png_row_infop
PNG_INTERNAL_FUNCTION(void,png_read_filter_row_paeth4_neon,(png_row_infop PNG_INTERNAL_FUNCTION(void,png_read_filter_row_paeth4_neon,(png_row_infop
row_info, png_bytep row, png_const_bytep prev_row),PNG_EMPTY); row_info, png_bytep row, png_const_bytep prev_row),PNG_EMPTY);
PNG_INTERNAL_FUNCTION(void,png_read_filter_row_sub3_sse2,(png_row_infop
row_info, png_bytep row, png_const_bytep prev_row),PNG_EMPTY);
PNG_INTERNAL_FUNCTION(void,png_read_filter_row_sub4_sse2,(png_row_infop
row_info, png_bytep row, png_const_bytep prev_row),PNG_EMPTY);
PNG_INTERNAL_FUNCTION(void,png_read_filter_row_avg3_sse2,(png_row_infop
row_info, png_bytep row, png_const_bytep prev_row),PNG_EMPTY);
PNG_INTERNAL_FUNCTION(void,png_read_filter_row_avg4_sse2,(png_row_infop
row_info, png_bytep row, png_const_bytep prev_row),PNG_EMPTY);
PNG_INTERNAL_FUNCTION(void,png_read_filter_row_paeth3_sse2,(png_row_infop
row_info, png_bytep row, png_const_bytep prev_row),PNG_EMPTY);
PNG_INTERNAL_FUNCTION(void,png_read_filter_row_paeth4_sse2,(png_row_infop
row_info, png_bytep row, png_const_bytep prev_row),PNG_EMPTY);
/* Choose the best filter to use and filter the row data */ /* Choose the best filter to use and filter the row data */
PNG_INTERNAL_FUNCTION(void,png_write_find_filter,(png_structrp png_ptr, PNG_INTERNAL_FUNCTION(void,png_write_find_filter,(png_structrp png_ptr,
png_row_infop row_info),PNG_EMPTY); png_row_infop row_info),PNG_EMPTY);
@ -1915,6 +1940,8 @@ PNG_INTERNAL_FUNCTION(void, PNG_FILTER_OPTIMIZATIONS, (png_structp png_ptr,
*/ */
PNG_INTERNAL_FUNCTION(void, png_init_filter_functions_neon, PNG_INTERNAL_FUNCTION(void, png_init_filter_functions_neon,
(png_structp png_ptr, unsigned int bpp), PNG_EMPTY); (png_structp png_ptr, unsigned int bpp), PNG_EMPTY);
PNG_INTERNAL_FUNCTION(void, png_init_filter_functions_sse2,
(png_structp png_ptr, unsigned int bpp), PNG_EMPTY);
#endif #endif
PNG_INTERNAL_FUNCTION(png_uint_32, png_check_keyword, (png_structrp png_ptr, PNG_INTERNAL_FUNCTION(png_uint_32, png_check_keyword, (png_structrp png_ptr,