diff --git a/png.c b/png.c index e87c14b23..faf63d353 100644 --- a/png.c +++ b/png.c @@ -1559,7 +1559,7 @@ png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times, r /= divisor; r = floor(r+.5); - /* A png_fixed_point is a 32 bit integer. */ + /* A png_fixed_point is a 32-bit integer. */ if (r <= 2147483647. && r >= -2147483648.) { *res = (png_fixed_point)r; @@ -1604,7 +1604,7 @@ png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times, if (s32 < D) /* else overflow */ { - /* s32.s00 is now the 64 bit product, do a standard + /* s32.s00 is now the 64-bit product, do a standard * division, we know that s32 < D, so the maximum * required shift is 31. */ @@ -1747,7 +1747,7 @@ png_reciprocal2(png_fixed_point a, png_fixed_point b) * 2010: moved from pngset.c) */ /* * Multiply two 32-bit numbers, V1 and V2, using 32-bit - * arithmetic, to produce a 64 bit result in the HI/LO words. + * arithmetic, to produce a 64-bit result in the HI/LO words. * * A B * x C D @@ -1801,7 +1801,7 @@ png_64bit_product (long v1, long v2, unsigned long *hi_product, * 8-bit log table * This is a table of -log(value/255)/log(2) for 'value' in the range 128 to * 255, so it's the base 2 logarithm of a normalized 8-bit floating point - * mantissa. The numbers are 32 bit fractions. + * mantissa. The numbers are 32-bit fractions. */ static png_uint_32 png_8bit_l2[128] = @@ -1832,10 +1832,10 @@ png_8bit_l2[128] = 172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U, 24347096U, 0U #if 0 - /* The following are the values for 16-bit tables - these work fine for the 8 - * bit conversions but produce very slightly larger errors in the 16-bit log - * (about 1.2 as opposed to 0.7 absolute error in the final value). To use - * these all the shifts below must be adjusted appropriately. + /* The following are the values for 16-bit tables - these work fine for the + * 8-bit conversions but produce very slightly larger errors in the 16-bit + * log (about 1.2 as opposed to 0.7 absolute error in the final value). To + * use these all the shifts below must be adjusted appropriately. */ 65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054, 57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803, @@ -1929,7 +1929,7 @@ png_log16bit(png_uint_32 x) if ((x & 0x8000) == 0) lg2 += 1, x <<= 1; - /* Calculate the base logarithm from the top 8 bits as a 28 bit fractional + /* Calculate the base logarithm from the top 8 bits as a 28-bit fractional * value. */ lg2 <<= 28; @@ -1959,7 +1959,7 @@ png_log16bit(png_uint_32 x) return (png_int_32)((lg2 + 2048) >> 12); } -/* The 'exp()' case must invert the above, taking a 20 bit fixed point +/* The 'exp()' case must invert the above, taking a 20-bit fixed point * logarithmic value and returning a 16 or 8-bit number as appropriate. In * each case only the low 16 bits are relevant - the fraction - since the * integer bits (the top 4) simply determine a shift. @@ -1970,7 +1970,7 @@ png_log16bit(png_uint_32 x) * of getting this accuracy in practice. * * To deal with this the following exp() function works out the exponent of the - * frational part of the logarithm by using an accurate 32 bit value from the + * frational part of the logarithm by using an accurate 32-bit value from the * top four fractional bits then multiplying in the remaining bits. */ static png_uint_32 @@ -1979,7 +1979,7 @@ png_32bit_exp[16] = # if PNG_DO_BC for (i=0;i<16;++i) { .5 + e(-i/16*l(2))*2^32; } # endif - /* NOTE: the first entry is deliberately set to the maximum 32 bit value. */ + /* NOTE: the first entry is deliberately set to the maximum 32-bit value. */ 4294967295U, 4112874773U, 3938502376U, 3771522796U, 3611622603U, 3458501653U, 3311872529U, 3171459999U, 3037000500U, 2908241642U, 2784941738U, 2666869345U, 2553802834U, 2445529972U, 2341847524U, 2242560872U @@ -2007,7 +2007,7 @@ png_exp(png_fixed_point x) { if (x > 0 && x <= 0xfffff) /* Else overflow or zero (underflow) */ { - /* Obtain a 4 bit approximation */ + /* Obtain a 4-bit approximation */ png_uint_32 e = png_32bit_exp[(x >> 12) & 0xf]; /* Incorporate the low 12 bits - these decrease the returned value by @@ -2053,10 +2053,10 @@ png_exp(png_fixed_point x) static png_byte png_exp8bit(png_fixed_point lg2) { - /* Get a 32 bit value: */ + /* Get a 32-bit value: */ png_uint_32 x = png_exp(lg2); - /* Convert the 32 bit value to 0..255 by multiplying by 256-1, note that the + /* Convert the 32-bit value to 0..255 by multiplying by 256-1, note that the * second, rounding, step can't overflow because of the first, subtraction, * step. */ @@ -2067,10 +2067,10 @@ png_exp8bit(png_fixed_point lg2) static png_uint_16 png_exp16bit(png_fixed_point lg2) { - /* Get a 32 bit value: */ + /* Get a 32-bit value: */ png_uint_32 x = png_exp(lg2); - /* Convert the 32 bit value to 0..65535 by multiplying by 65536-1: */ + /* Convert the 32-bit value to 0..65535 by multiplying by 65536-1: */ x -= x >> 16; return (png_uint_16)((x + 32767U) >> 16); } @@ -2247,14 +2247,14 @@ png_build_16to8_table(png_structp png_ptr, png_uint_16pp *ptable, /* 'gamma_val' is set to the reciprocal of the value calculated above, so * pow(out,g) is an *input* value. 'last' is the last input value set. * - * In the loop 'i' is used to find output values. Since the output is 8 - * bit there are only 256 possible values. The tables are set up to + * In the loop 'i' is used to find output values. Since the output is + * 8-bit there are only 256 possible values. The tables are set up to * select the closest possible output value for each input by finding * the input value at the boundary between each pair of output values * and filling the table up to that boundary with the lower output * value. * - * The boundary values are 0.5,1.5..253.5,254.5. Since these are 9 bit + * The boundary values are 0.5,1.5..253.5,254.5. Since these are 9-bit * values the code below uses a 16-bit value in i; the values start at * 128.5 (for 0.5) and step by 257, for a total of 254 values (the last * entries are filled with 255). Start i at 128 and fill all 'last'