libpng/pngrutil.c

1244 lines
32 KiB
C
Raw Normal View History

1995-07-20 03:43:20 -04:00
/* pngrutil.c - utilities to read a png file
libpng 1.0 beta 1 - version 0.71
For conditions of distribution and use, see copyright notice in png.h
Copyright (c) 1995 Guy Eric Schalnat, Group 42, Inc.
June 26, 1995
*/
#define PNG_INTERNAL
#include "png.h"
/* grab an uint 32 from a buffer */
png_uint_32
png_get_uint_32(png_byte *buf)
{
png_uint_32 i;
i = ((png_uint_32)(*buf) << 24) +
((png_uint_32)(*(buf + 1)) << 16) +
((png_uint_32)(*(buf + 2)) << 8) +
(png_uint_32)(*(buf + 3));
return i;
}
/* grab an uint 16 from a buffer */
png_uint_16
png_get_uint_16(png_byte *buf)
{
png_uint_16 i;
i = ((png_uint_16)(*buf) << 8) +
(png_uint_16)(*(buf + 1));
return i;
}
/* read data, and run it through the crc */
void
png_crc_read(png_struct *png_ptr, png_byte *buf, png_uint_32 length)
{
png_read_data(png_ptr, buf, length);
png_calculate_crc(png_ptr, buf, length);
}
/* skip data, but calcuate the crc anyway */
void
png_crc_skip(png_struct *png_ptr, png_uint_32 length)
{
png_uint_32 i;
for (i = length; i > png_ptr->zbuf_size; i -= png_ptr->zbuf_size)
{
png_read_data(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size);
png_calculate_crc(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size);
}
if (i)
{
png_read_data(png_ptr, png_ptr->zbuf, i);
png_calculate_crc(png_ptr, png_ptr->zbuf, i);
}
}
/* read and check the IDHR chunk */
void
png_handle_IHDR(png_struct *png_ptr, png_info *info, png_uint_32 length)
{
png_byte buf[13];
png_uint_32 width, height;
int bit_depth, color_type, compression_type, filter_type;
int interlace_type;
/* check the length */
if (length != 13)
png_error(png_ptr, "Invalid IHDR chunk");
png_crc_read(png_ptr, buf, 13);
width = png_get_uint_32(buf);
height = png_get_uint_32(buf + 4);
bit_depth = buf[8];
color_type = buf[9];
compression_type = buf[10];
filter_type = buf[11];
interlace_type = buf[12];
/* check for width and height valid values */
if (width == 0 || height == 0)
png_error(png_ptr, "Invalid Width or Height Found");
/* check other values */
if (bit_depth != 1 && bit_depth != 2 &&
bit_depth != 4 && bit_depth != 8 &&
bit_depth != 16)
png_error(png_ptr, "Invalid Bit Depth Found");
if (color_type < 0 || color_type == 1 ||
color_type == 5 || color_type > 6)
png_error(png_ptr, "Invalid Color Type Found");
if (color_type == PNG_COLOR_TYPE_PALETTE &&
bit_depth == 16)
png_error(png_ptr, "Found Invalid Color Type and Bit Depth Combination");
if ((color_type == PNG_COLOR_TYPE_RGB ||
color_type == PNG_COLOR_TYPE_GRAY_ALPHA ||
color_type == PNG_COLOR_TYPE_RGB_ALPHA) &&
bit_depth < 8)
png_error(png_ptr, "Found Invalid Color Type and Bit Depth Combination");
if (interlace_type > 1)
png_error(png_ptr, "Found Invalid Interlace Value");
if (compression_type > 0)
png_error(png_ptr, "Found Invalid Compression Value");
if (filter_type > 0)
png_error(png_ptr, "Found Invalid Filter Value");
/* set internal variables */
png_ptr->width = width;
png_ptr->height = height;
png_ptr->bit_depth = bit_depth;
png_ptr->interlaced = interlace_type;
png_ptr->color_type = color_type;
/* find number of channels */
switch (png_ptr->color_type)
{
case 0:
case 3:
png_ptr->channels = 1;
break;
case 2:
png_ptr->channels = 3;
break;
case 4:
png_ptr->channels = 2;
break;
case 6:
png_ptr->channels = 4;
break;
}
/* set up other useful info */
png_ptr->pixel_depth = png_ptr->bit_depth *
png_ptr->channels;
png_ptr->rowbytes = ((png_ptr->width *
(png_uint_32)png_ptr->pixel_depth + 7) >> 3);
/* call the IHDR callback (which should just set up info) */
png_read_IHDR(png_ptr, info, width, height, bit_depth,
color_type, compression_type, filter_type, interlace_type);
}
/* read and check the palette */
void
png_handle_PLTE(png_struct *png_ptr, png_info *info, png_uint_32 length)
{
int num, i;
png_color *palette;
if (length % 3)
png_error(png_ptr, "Invalid Palette Chunk");
num = (int)length / 3;
palette = (png_color *)png_malloc(png_ptr, num * sizeof (png_color));
for (i = 0; i < num; i++)
{
png_byte buf[3];
png_crc_read(png_ptr, buf, 3);
/* don't depend upon png_color being any order */
palette[i].red = buf[0];
palette[i].green = buf[1];
palette[i].blue = buf[2];
}
png_ptr->palette = palette;
png_ptr->num_palette = num;
png_read_PLTE(png_ptr, info, palette, num);
}
void
png_handle_gAMA(png_struct *png_ptr, png_info *info, png_uint_32 length)
{
png_uint_32 igamma;
float gamma;
png_byte buf[4];
if (length != 4)
{
png_crc_skip(png_ptr, length);
return;
}
png_crc_read(png_ptr, buf, 4);
igamma = png_get_uint_32(buf);
/* check for zero gamma */
if (!igamma)
return;
gamma = (float)igamma / (float)100000.0;
png_read_gAMA(png_ptr, info, gamma);
png_ptr->gamma = gamma;
}
void
png_handle_sBIT(png_struct *png_ptr, png_info *info, png_uint_32 length)
{
int slen;
png_byte buf[4];
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
slen = 3;
else
slen = png_ptr->channels;
if (length != (png_uint_32)slen)
{
png_crc_skip(png_ptr, length);
return;
}
png_crc_read(png_ptr, buf, length);
if (png_ptr->color_type & PNG_COLOR_MASK_COLOR)
{
png_ptr->sig_bit.red = buf[0];
png_ptr->sig_bit.green = buf[1];
png_ptr->sig_bit.blue = buf[2];
png_ptr->sig_bit.alpha = buf[3];
}
else
{
png_ptr->sig_bit.gray = buf[0];
png_ptr->sig_bit.alpha = buf[1];
}
png_read_sBIT(png_ptr, info, &(png_ptr->sig_bit));
}
void
png_handle_cHRM(png_struct *png_ptr, png_info *info, png_uint_32 length)
{
png_byte buf[4];
png_uint_32 v;
float white_x, white_y, red_x, red_y, green_x, green_y, blue_x, blue_y;
if (length != 32)
{
png_crc_skip(png_ptr, length);
return;
}
png_crc_read(png_ptr, buf, 4);
v = png_get_uint_32(buf);
white_x = (float)v / (float)100000.0;
png_crc_read(png_ptr, buf, 4);
v = png_get_uint_32(buf);
white_y = (float)v / (float)100000.0;
png_crc_read(png_ptr, buf, 4);
v = png_get_uint_32(buf);
red_x = (float)v / (float)100000.0;
png_crc_read(png_ptr, buf, 4);
v = png_get_uint_32(buf);
red_y = (float)v / (float)100000.0;
png_crc_read(png_ptr, buf, 4);
v = png_get_uint_32(buf);
green_x = (float)v / (float)100000.0;
png_crc_read(png_ptr, buf, 4);
v = png_get_uint_32(buf);
green_y = (float)v / (float)100000.0;
png_crc_read(png_ptr, buf, 4);
v = png_get_uint_32(buf);
blue_x = (float)v / (float)100000.0;
png_crc_read(png_ptr, buf, 4);
v = png_get_uint_32(buf);
blue_y = (float)v / (float)100000.0;
png_read_cHRM(png_ptr, info,
white_x, white_y, red_x, red_y, green_x, green_y, blue_x, blue_y);
}
void
png_handle_tRNS(png_struct *png_ptr, png_info *info, png_uint_32 length)
{
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
{
if (length > png_ptr->num_palette)
{
png_crc_skip(png_ptr, length);
return;
}
png_ptr->trans = png_malloc(png_ptr, length);
png_crc_read(png_ptr, png_ptr->trans, length);
png_ptr->num_trans = (int)length;
}
else if (png_ptr->color_type == PNG_COLOR_TYPE_RGB)
{
png_byte buf[6];
if (length != 6)
{
png_crc_skip(png_ptr, length);
return;
}
png_crc_read(png_ptr, buf, length);
png_ptr->num_trans = 3;
png_ptr->trans_values.red = png_get_uint_16(buf);
png_ptr->trans_values.green = png_get_uint_16(buf + 2);
png_ptr->trans_values.blue = png_get_uint_16(buf + 4);
}
else if (png_ptr->color_type == PNG_COLOR_TYPE_GRAY)
{
png_byte buf[6];
if (length != 2)
{
png_crc_skip(png_ptr, length);
return;
}
png_crc_read(png_ptr, buf, 2);
png_ptr->num_trans = 1;
png_ptr->trans_values.gray = png_get_uint_16(buf);
}
else
png_error(png_ptr, "Invalid tRNS chunk");
png_read_tRNS(png_ptr, info, png_ptr->trans, png_ptr->num_trans,
&(png_ptr->trans_values));
}
void
png_handle_bKGD(png_struct *png_ptr, png_info *info, png_uint_32 length)
{
int truelen;
png_byte buf[6];
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
truelen = 1;
else if (png_ptr->color_type & PNG_COLOR_MASK_COLOR)
truelen = 6;
else
truelen = 2;
if (length != (png_uint_32)truelen)
{
png_crc_skip(png_ptr, length);
return;
}
png_crc_read(png_ptr, buf, length);
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
png_ptr->background.index = buf[0];
else if (!(png_ptr->color_type & PNG_COLOR_MASK_COLOR))
png_ptr->background.gray = png_get_uint_16(buf);
else
{
png_ptr->background.red = png_get_uint_16(buf);
png_ptr->background.green = png_get_uint_16(buf + 2);
png_ptr->background.blue = png_get_uint_16(buf + 4);
}
png_read_bKGD(png_ptr, info, &(png_ptr->background));
}
void
png_handle_hIST(png_struct *png_ptr, png_info *info, png_uint_32 length)
{
int num, i;
if (length != 2 * png_ptr->num_palette)
{
png_crc_skip(png_ptr, length);
return;
}
num = (int)length / 2;
png_ptr->hist = png_malloc(png_ptr, num * sizeof (png_uint_16));
for (i = 0; i < num; i++)
{
png_byte buf[2];
png_crc_read(png_ptr, buf, 2);
png_ptr->hist[i] = png_get_uint_16(buf);
}
png_read_hIST(png_ptr, info, png_ptr->hist);
}
void
png_handle_pHYs(png_struct *png_ptr, png_info *info, png_uint_32 length)
{
png_byte buf[9];
png_uint_32 res_x, res_y;
int unit_type;
if (length != 9)
{
png_crc_skip(png_ptr, length);
return;
}
png_crc_read(png_ptr, buf, 9);
res_x = png_get_uint_32(buf);
res_y = png_get_uint_32(buf + 4);
unit_type = buf[8];
png_read_pHYs(png_ptr, info, res_x, res_y, unit_type);
}
void
png_handle_oFFs(png_struct *png_ptr, png_info *info, png_uint_32 length)
{
png_byte buf[9];
png_uint_32 offset_x, offset_y;
int unit_type;
if (length != 9)
{
png_crc_skip(png_ptr, length);
return;
}
png_crc_read(png_ptr, buf, 9);
offset_x = png_get_uint_32(buf);
offset_y = png_get_uint_32(buf + 4);
unit_type = buf[8];
png_read_oFFs(png_ptr, info, offset_x, offset_y, unit_type);
}
void
png_handle_tIME(png_struct *png_ptr, png_info *info, png_uint_32 length)
{
png_byte buf[7];
png_time mod_time;
if (length != 7)
{
png_crc_skip(png_ptr, length);
return;
}
png_crc_read(png_ptr, buf, 7);
mod_time.second = buf[6];
mod_time.minute = buf[5];
mod_time.hour = buf[4];
mod_time.day = buf[3];
mod_time.month = buf[2];
mod_time.year = png_get_uint_16(buf);
png_read_tIME(png_ptr, info, &mod_time);
}
/* note: this does not correctly handle chunks that are > 64K */
void
png_handle_tEXt(png_struct *png_ptr, png_info *info, png_uint_32 length)
{
char *key, *text;
text = NULL;
key = (char *)png_large_malloc(png_ptr, length + 1);
png_crc_read(png_ptr, (png_byte *)key, length);
key[(png_size_t)length] = '\0';
for (text = key; *text; text++)
/* empty loop */ ;
if (text != key + (png_size_t)length)
text++;
png_read_tEXt(png_ptr, info, key, text, length - (text - key));
}
/* note: this does not correctly handle chunks that are > 64K compressed */
void
png_handle_zTXt(png_struct *png_ptr, png_info *info, png_uint_32 length)
{
char *key, *text;
int ret;
png_uint_32 text_size, key_size;
text = NULL;
key = png_large_malloc(png_ptr, length + 1);
png_crc_read(png_ptr, (png_byte *)key, length);
key[(png_size_t)length] = '\0';
for (text = key; *text; text++)
/* empty loop */ ;
/* zTXt can't have zero text */
if (text == key + (png_size_t)length)
{
png_large_free(png_ptr, key);
return;
}
text++;
if (*text) /* check compression byte */
{
png_large_free(png_ptr, key);
return;
}
text++;
png_ptr->zstream->next_in = (png_byte *)text;
png_ptr->zstream->avail_in = (uInt)(length - (text - key));
png_ptr->zstream->next_out = png_ptr->zbuf;
png_ptr->zstream->avail_out = (png_size_t)png_ptr->zbuf_size;
key_size = text - key;
text_size = 0;
text = NULL;
while (png_ptr->zstream->avail_in)
{
ret = inflate(png_ptr->zstream, Z_PARTIAL_FLUSH);
if (ret != Z_OK && ret != Z_STREAM_END)
{
inflateReset(png_ptr->zstream);
png_ptr->zstream->avail_in = 0;
png_large_free(png_ptr, key);
png_large_free(png_ptr, text);
return;
}
if (!png_ptr->zstream->avail_out || ret == Z_STREAM_END)
{
if (!text)
{
text = png_malloc(png_ptr,
png_ptr->zbuf_size - png_ptr->zstream->avail_out +
key_size + 1);
memcpy(text + (png_size_t)key_size, png_ptr->zbuf,
(png_size_t)(png_ptr->zbuf_size - png_ptr->zstream->avail_out));
memcpy(text, key, (png_size_t)key_size);
text_size = key_size + (png_size_t)png_ptr->zbuf_size -
png_ptr->zstream->avail_out;
*(text + (png_size_t)text_size) = '\0';
}
else
{
char *tmp;
tmp = text;
text = png_large_malloc(png_ptr, text_size +
png_ptr->zbuf_size - png_ptr->zstream->avail_out + 1);
memcpy(text, tmp, (png_size_t)text_size);
png_large_free(png_ptr, tmp);
memcpy(text + (png_size_t)text_size, png_ptr->zbuf,
(png_size_t)(png_ptr->zbuf_size - png_ptr->zstream->avail_out));
text_size += png_ptr->zbuf_size - png_ptr->zstream->avail_out;
*(text + (png_size_t)text_size) = '\0';
}
if (ret != Z_STREAM_END)
{
png_ptr->zstream->next_out = png_ptr->zbuf;
png_ptr->zstream->avail_out = (uInt)png_ptr->zbuf_size;
}
}
else
{
break;
}
if (ret == Z_STREAM_END)
break;
}
inflateReset(png_ptr->zstream);
png_ptr->zstream->avail_in = 0;
if (ret != Z_STREAM_END)
{
png_large_free(png_ptr, key);
png_large_free(png_ptr, text);
return;
}
png_large_free(png_ptr, key);
key = text;
text += (png_size_t)key_size;
text_size -= key_size;
png_read_zTXt(png_ptr, info, key, text, text_size, 0);
}
/* Combines the row recently read in with the previous row.
This routine takes care of alpha and transparency if requested.
This routine also handles the two methods of progressive display
of interlaced images, depending on the mask value.
The mask value describes which pixels are to be combined with
the row. The pattern always repeats every 8 pixels, so just 8
bits are needed. A one indicates the pixels is to be combined,
a zero indicates the pixel is to be skipped. This is in addition
to any alpha or transparency value associated with the pixel. If
you want all pixels to be combined, pass 0xff (255) in mask.
*/
void
png_combine_row(png_struct *png_ptr, png_byte *row,
int mask)
{
if (mask == 0xff)
{
memcpy(row, png_ptr->row_buf + 1,
(png_size_t)((png_ptr->width *
png_ptr->row_info.pixel_depth + 7) >> 3));
}
else
{
switch (png_ptr->row_info.pixel_depth)
{
case 1:
{
png_byte *sp;
png_byte *dp;
int m;
int shift;
png_uint_32 i;
int value;
sp = png_ptr->row_buf + 1;
dp = row;
shift = 7;
m = 0x80;
for (i = 0; i < png_ptr->width; i++)
{
if (m & mask)
{
value = (*sp >> shift) & 0x1;
*dp &= (png_byte)((0x7f7f >> (7 - shift)) & 0xff);
*dp |= (value << shift);
}
if (shift == 0)
{
shift = 7;
sp++;
dp++;
}
else
shift--;
if (m == 1)
m = 0x80;
else
m >>= 1;
}
break;
}
case 2:
{
png_byte *sp;
png_byte *dp;
int m;
int shift;
png_uint_32 i;
int value;
sp = png_ptr->row_buf + 1;
dp = row;
shift = 6;
m = 0x80;
for (i = 0; i < png_ptr->width; i++)
{
if (m & mask)
{
value = (*sp >> shift) & 0x3;
*dp &= (png_byte)((0x3f3f >> (6 - shift)) & 0xff);
*dp |= (value << shift);
}
if (shift == 0)
{
shift = 6;
sp++;
dp++;
}
else
shift -= 2;
if (m == 1)
m = 0x80;
else
m >>= 1;
}
break;
}
case 4:
{
png_byte *sp;
png_byte *dp;
int m;
int shift;
png_uint_32 i;
int value;
sp = png_ptr->row_buf + 1;
dp = row;
shift = 4;
m = 0x80;
for (i = 0; i < png_ptr->width; i++)
{
if (m & mask)
{
value = (*sp >> shift) & 0xf;
*dp &= (png_byte)((0xf0f >> (4 - shift)) & 0xff);
*dp |= (value << shift);
}
if (shift == 0)
{
shift = 4;
sp++;
dp++;
}
else
shift -= 4;
if (m == 1)
m = 0x80;
else
m >>= 1;
}
break;
}
default:
{
png_byte *sp;
png_byte *dp;
png_uint_32 i;
int pixel_bytes, m;
pixel_bytes = (png_ptr->row_info.pixel_depth >> 3);
sp = png_ptr->row_buf + 1;
dp = row;
m = 0x80;
for (i = 0; i < png_ptr->width; i++)
{
if (m & mask)
{
memcpy(dp, sp, pixel_bytes);
}
sp += pixel_bytes;
dp += pixel_bytes;
if (m == 1)
m = 0x80;
else
m >>= 1;
}
break;
}
}
}
}
void
png_do_read_interlace(png_row_info *row_info, png_byte *row, int pass)
{
if (row && row_info)
{
png_uint_32 final_width;
final_width = row_info->width * png_pass_inc[pass];
switch (row_info->pixel_depth)
{
case 1:
{
png_byte *sp, *dp;
int sshift, dshift;
png_byte v;
png_uint_32 i;
int j;
sp = row + (png_size_t)((row_info->width - 1) >> 3);
sshift = 7 - (int)((row_info->width + 7) & 7);
dp = row + (png_size_t)((final_width - 1) >> 3);
dshift = 7 - (int)((final_width + 7) & 7);
for (i = row_info->width; i; i--)
{
v = (*sp >> sshift) & 0x1;
for (j = 0; j < png_pass_inc[pass]; j++)
{
*dp &= (png_byte)((0x7f7f >> (7 - dshift)) & 0xff);
*dp |= (png_byte)(v << dshift);
if (dshift == 7)
{
dshift = 0;
dp--;
}
else
dshift++;
}
if (sshift == 7)
{
sshift = 0;
sp--;
}
else
sshift++;
}
break;
}
case 2:
{
png_byte *sp, *dp;
int sshift, dshift;
png_byte v;
png_uint_32 i, j;
sp = row + (png_size_t)((row_info->width - 1) >> 2);
sshift = (png_size_t)((3 - ((row_info->width + 3) & 3)) << 1);
dp = row + (png_size_t)((final_width - 1) >> 2);
dshift = (png_size_t)((3 - ((final_width + 3) & 3)) << 1);
for (i = row_info->width; i; i--)
{
v = (*sp >> sshift) & 0x3;
for (j = 0; j < png_pass_inc[pass]; j++)
{
*dp &= (png_byte)((0x3f3f >> (6 - dshift)) & 0xff);
*dp |= (v << dshift);
if (dshift == 6)
{
dshift = 0;
dp--;
}
else
dshift += 2;
}
if (sshift == 6)
{
sshift = 0;
sp--;
}
else
sshift += 2;
}
break;
}
case 4:
{
png_byte *sp, *dp;
int sshift, dshift;
png_byte v;
png_uint_32 i;
int j;
sp = row + (png_size_t)((row_info->width - 1) >> 1);
sshift = (png_size_t)((1 - ((row_info->width + 1) & 1)) << 2);
dp = row + (png_size_t)((final_width - 1) >> 1);
dshift = (png_size_t)((1 - ((final_width + 1) & 1)) << 2);
for (i = row_info->width; i; i--)
{
v = (*sp >> sshift) & 0xf;
for (j = 0; j < png_pass_inc[pass]; j++)
{
*dp &= (png_byte)((0xf0f >> (4 - dshift)) & 0xff);
*dp |= (v << dshift);
if (dshift == 4)
{
dshift = 0;
dp--;
}
else
dshift = 4;
}
if (sshift == 4)
{
sshift = 0;
sp--;
}
else
sshift = 4;
}
break;
}
default:
{
png_byte *sp, *dp;
png_byte v[8];
png_uint_32 i;
int j;
int pixel_bytes;
pixel_bytes = (row_info->pixel_depth >> 3);
sp = row + (png_size_t)((row_info->width - 1) * pixel_bytes);
dp = row + (png_size_t)((final_width - 1) * pixel_bytes);
for (i = row_info->width; i; i--)
{
memcpy(v, sp, pixel_bytes);
for (j = 0; j < png_pass_inc[pass]; j++)
{
memcpy(dp, v, pixel_bytes);
dp -= pixel_bytes;
}
sp -= pixel_bytes;
}
break;
}
}
row_info->width = final_width;
row_info->rowbytes = ((final_width *
(png_uint_32)row_info->pixel_depth + 7) >> 3);
}
}
void
png_read_filter_row(png_row_info *row_info, png_byte *row,
png_byte *prev_row, int filter)
{
switch (filter)
{
case 0:
break;
case 1:
{
png_uint_32 i;
int bpp;
png_byte *rp;
png_byte *lp;
bpp = (row_info->pixel_depth + 7) / 8;
for (i = (png_uint_32)bpp, rp = row + bpp, lp = row;
i < row_info->rowbytes; i++, rp++, lp++)
{
*rp = (png_byte)(((int)(*rp) + (int)(*lp)) & 0xff);
}
break;
}
case 2:
{
png_uint_32 i;
png_byte *rp;
png_byte *pp;
for (i = 0, rp = row, pp = prev_row;
i < row_info->rowbytes; i++, rp++, pp++)
{
*rp = (png_byte)(((int)(*rp) + (int)(*pp)) & 0xff);
}
break;
}
case 3:
{
png_uint_32 i;
int bpp;
png_byte *rp;
png_byte *pp;
png_byte *lp;
bpp = (row_info->pixel_depth + 7) / 8;
for (i = 0, rp = row, pp = prev_row;
i < (png_uint_32)bpp; i++, rp++, pp++)
{
*rp = (png_byte)(((int)(*rp) +
((int)(*pp) / 2)) & 0xff);
}
for (lp = row; i < row_info->rowbytes; i++, rp++, lp++, pp++)
{
*rp = (png_byte)(((int)(*rp) +
(int)(*pp + *lp) / 2) & 0xff);
}
break;
}
case 4:
{
int bpp;
png_uint_32 i;
png_byte *rp;
png_byte *pp;
png_byte *lp;
png_byte *cp;
bpp = (row_info->pixel_depth + 7) / 8;
for (i = 0, rp = row, pp = prev_row,
lp = row - bpp, cp = prev_row - bpp;
i < row_info->rowbytes; i++, rp++, pp++, lp++, cp++)
{
int a, b, c, pa, pb, pc, p;
b = *pp;
if (i >= (png_uint_32)bpp)
{
c = *cp;
a = *lp;
}
else
{
a = c = 0;
}
p = a + b - c;
pa = abs(p - a);
pb = abs(p - b);
pc = abs(p - c);
if (pa <= pb && pa <= pc)
p = a;
else if (pb <= pc)
p = b;
else
p = c;
*rp = (png_byte)(((int)(*rp) + p) & 0xff);
}
break;
}
default:
break;
}
}
void
png_read_finish_row(png_struct *png_ptr)
{
png_ptr->row_number++;
if (png_ptr->row_number < png_ptr->num_rows)
return;
if (png_ptr->interlaced)
{
png_ptr->row_number = 0;
memset(png_ptr->prev_row, 0, (png_size_t)png_ptr->rowbytes + 1);
do
{
png_ptr->pass++;
if (png_ptr->pass >= 7)
break;
png_ptr->iwidth = (png_ptr->width +
png_pass_inc[png_ptr->pass] - 1 -
png_pass_start[png_ptr->pass]) /
png_pass_inc[png_ptr->pass];
png_ptr->irowbytes = ((png_ptr->iwidth *
png_ptr->pixel_depth + 7) >> 3) + 1;
if (!(png_ptr->transformations & PNG_INTERLACE))
{
png_ptr->num_rows = (png_ptr->height +
png_pass_yinc[png_ptr->pass] - 1 -
png_pass_ystart[png_ptr->pass]) /
png_pass_yinc[png_ptr->pass];
if (!(png_ptr->num_rows))
continue;
}
} while (png_ptr->iwidth == 0);
if (png_ptr->pass < 7)
return;
}
if (!png_ptr->zlib_finished)
{
char extra;
int ret;
png_ptr->zstream->next_out = (Byte *)&extra;
png_ptr->zstream->avail_out = (uInt)1;
do
{
if (!(png_ptr->zstream->avail_in))
{
while (!png_ptr->idat_size)
{
png_byte buf[4];
png_uint_32 crc;
png_read_data(png_ptr, buf, 4);
crc = png_get_uint_32(buf);
if (((crc ^ 0xffffffffL) & 0xffffffffL) !=
(png_ptr->crc & 0xffffffffL))
png_error(png_ptr, "Bad CRC value");
png_read_data(png_ptr, buf, 4);
png_ptr->idat_size = png_get_uint_32(buf);
png_reset_crc(png_ptr);
png_crc_read(png_ptr, buf, 4);
if (memcmp(buf, png_IDAT, 4))
png_error(png_ptr, "Not enough image data");
}
png_ptr->zstream->avail_in = (uInt)png_ptr->zbuf_size;
png_ptr->zstream->next_in = png_ptr->zbuf;
if (png_ptr->zbuf_size > png_ptr->idat_size)
png_ptr->zstream->avail_in = (uInt)png_ptr->idat_size;
png_crc_read(png_ptr, png_ptr->zbuf, png_ptr->zstream->avail_in);
png_ptr->idat_size -= png_ptr->zstream->avail_in;
}
ret = inflate(png_ptr->zstream, Z_PARTIAL_FLUSH);
if (ret == Z_STREAM_END)
{
if (!(png_ptr->zstream->avail_out) || png_ptr->zstream->avail_in ||
png_ptr->idat_size)
png_error(png_ptr, "Extra compressed data");
png_ptr->mode = PNG_AT_LAST_IDAT;
break;
}
if (ret != Z_OK)
png_error(png_ptr, "Compression Error");
if (!(png_ptr->zstream->avail_out))
png_error(png_ptr, "Extra compressed data");
} while (1);
png_ptr->zstream->avail_out = 0;
}
if (png_ptr->idat_size || png_ptr->zstream->avail_in)
png_error(png_ptr, "Extra compression data");
inflateReset(png_ptr->zstream);
png_ptr->mode = PNG_AT_LAST_IDAT;
}
void
png_read_start_row(png_struct *png_ptr)
{
int max_pixel_depth;
png_uint_32 rowbytes;
png_ptr->zstream->avail_in = 0;
png_init_read_transformations(png_ptr);
if (png_ptr->interlaced)
{
if (!(png_ptr->transformations & PNG_INTERLACE))
png_ptr->num_rows = (png_ptr->height + png_pass_yinc[0] - 1 -
png_pass_ystart[0]) / png_pass_yinc[0];
else
png_ptr->num_rows = png_ptr->height;
png_ptr->iwidth = (png_ptr->width +
png_pass_inc[png_ptr->pass] - 1 -
png_pass_start[png_ptr->pass]) /
png_pass_inc[png_ptr->pass];
png_ptr->irowbytes = ((png_ptr->iwidth *
png_ptr->pixel_depth + 7) >> 3) + 1;
}
else
{
png_ptr->num_rows = png_ptr->height;
png_ptr->iwidth = png_ptr->width;
png_ptr->irowbytes = png_ptr->rowbytes + 1;
}
max_pixel_depth = png_ptr->pixel_depth;
if ((png_ptr->transformations & PNG_PACK) && png_ptr->bit_depth < 8)
{
max_pixel_depth = 8;
}
if (png_ptr->transformations & (PNG_EXPAND | PNG_PACK))
{
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
{
if (png_ptr->num_trans)
max_pixel_depth = 32;
else
max_pixel_depth = 24;
}
else if (png_ptr->color_type == PNG_COLOR_TYPE_GRAY)
{
if (max_pixel_depth < 8)
max_pixel_depth = 8;
if (png_ptr->num_trans)
max_pixel_depth *= 2;
}
else if (png_ptr->color_type == PNG_COLOR_TYPE_RGB)
{
if (png_ptr->num_trans)
{
max_pixel_depth *= 4;
max_pixel_depth /= 3;
}
}
}
if (png_ptr->transformations & PNG_RGBA)
{
if (max_pixel_depth < 32)
max_pixel_depth = 32;
}
if (png_ptr->transformations & PNG_GRAY_TO_RGB)
{
if ((png_ptr->num_trans && (png_ptr->transformations & PNG_EXPAND)) ||
png_ptr->color_type == PNG_COLOR_TYPE_GRAY_ALPHA)
{
if (max_pixel_depth <= 16)
max_pixel_depth = 32;
else if (max_pixel_depth <= 32)
max_pixel_depth = 64;
}
else
{
if (max_pixel_depth <= 8)
max_pixel_depth = 24;
else if (max_pixel_depth <= 16)
max_pixel_depth = 48;
}
}
/* align the width on the next larger 8 pixels. Mainly used
for interlacing */
rowbytes = ((png_ptr->width + 7) & ~((png_uint_32)7));
/* calculate the maximum bytes needed, adding a byte and a pixel
for safety sake */
rowbytes = ((rowbytes * (png_uint_32)max_pixel_depth + 7) >> 3) +
1 + ((max_pixel_depth + 7) >> 3);
#ifdef PNG_MAX_MALLOC_64K
if (rowbytes > 65536L)
png_error(png_ptr, "This image requires a row greater then 64KB");
#endif
png_ptr->row_buf = (png_byte *)png_large_malloc(png_ptr, rowbytes);
#ifdef PNG_MAX_MALLOC_64K
if (png_ptr->rowbytes + 1 > 65536L)
png_error(png_ptr, "This image requires a row greater then 64KB");
#endif
png_ptr->prev_row = png_large_malloc(png_ptr,
png_ptr->rowbytes + 1);
memset(png_ptr->prev_row, 0, (png_size_t)png_ptr->rowbytes + 1);
png_ptr->row_init = 1;
/* if we have to do any modifications of values for the transformations,
do them here */
}