/* * jdhuff.c * * Copyright (C) 1991-1994, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains Huffman entropy decoding routines. * * Much of the complexity here has to do with supporting input suspension. * If the data source module demands suspension, we want to be able to back * up to the start of the current MCU. To do this, we copy state variables * into local working storage, and update them back to the permanent JPEG * objects only upon successful completion of an MCU. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* Derived data constructed for each Huffman table */ #define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */ typedef struct { /* Basic tables: (element [0] of each array is unused) */ INT32 mincode[17]; /* smallest code of length k */ INT32 maxcode[18]; /* largest code of length k (-1 if none) */ /* (maxcode[17] is a sentinel to ensure huff_DECODE terminates) */ int valptr[17]; /* huffval[] index of 1st symbol of length k */ /* Back link to public Huffman table (needed only in slow_DECODE) */ JHUFF_TBL *pub; /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of * the input data stream. If the next Huffman code is no more * than HUFF_LOOKAHEAD bits long, we can obtain its length and * the corresponding symbol directly from these tables. */ int look_nbits[1< next byte to read from source */ size_t bytes_in_buffer; /* # of bytes remaining in source buffer */ savable_state cur; /* Current bit buffer & DC state */ j_decompress_ptr cinfo; /* fill_bit_buffer needs access to this */ } working_state; /* Forward declarations */ LOCAL void fix_huff_tbl JPP((j_decompress_ptr cinfo, JHUFF_TBL * htbl, D_DERIVED_TBL ** pdtbl)); /* * Initialize for a Huffman-compressed scan. */ METHODDEF void start_pass_huff_decoder (j_decompress_ptr cinfo) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; int ci, dctbl, actbl; jpeg_component_info * compptr; for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; dctbl = compptr->dc_tbl_no; actbl = compptr->ac_tbl_no; /* Make sure requested tables are present */ if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS || cinfo->dc_huff_tbl_ptrs[dctbl] == NULL) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl); if (actbl < 0 || actbl >= NUM_HUFF_TBLS || cinfo->ac_huff_tbl_ptrs[actbl] == NULL) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl); /* Compute derived values for Huffman tables */ /* We may do this more than once for a table, but it's not expensive */ fix_huff_tbl(cinfo, cinfo->dc_huff_tbl_ptrs[dctbl], & entropy->dc_derived_tbls[dctbl]); fix_huff_tbl(cinfo, cinfo->ac_huff_tbl_ptrs[actbl], & entropy->ac_derived_tbls[actbl]); /* Initialize DC predictions to 0 */ entropy->saved.last_dc_val[ci] = 0; } /* Initialize private state variables */ entropy->saved.bits_left = 0; entropy->saved.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ entropy->printed_eod = FALSE; /* Initialize restart counter */ entropy->restarts_to_go = cinfo->restart_interval; } LOCAL void fix_huff_tbl (j_decompress_ptr cinfo, JHUFF_TBL * htbl, D_DERIVED_TBL ** pdtbl) /* Compute the derived values for a Huffman table */ { D_DERIVED_TBL *dtbl; int p, i, l, si; int lookbits, ctr; char huffsize[257]; unsigned int huffcode[257]; unsigned int code; /* Allocate a workspace if we haven't already done so. */ if (*pdtbl == NULL) *pdtbl = (D_DERIVED_TBL *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(D_DERIVED_TBL)); dtbl = *pdtbl; dtbl->pub = htbl; /* fill in back link */ /* Figure C.1: make table of Huffman code length for each symbol */ /* Note that this is in code-length order. */ p = 0; for (l = 1; l <= 16; l++) { for (i = 1; i <= (int) htbl->bits[l]; i++) huffsize[p++] = (char) l; } huffsize[p] = 0; /* Figure C.2: generate the codes themselves */ /* Note that this is in code-length order. */ code = 0; si = huffsize[0]; p = 0; while (huffsize[p]) { while (((int) huffsize[p]) == si) { huffcode[p++] = code; code++; } code <<= 1; si++; } /* Figure F.15: generate decoding tables for bit-sequential decoding */ p = 0; for (l = 1; l <= 16; l++) { if (htbl->bits[l]) { dtbl->valptr[l] = p; /* huffval[] index of 1st symbol of code length l */ dtbl->mincode[l] = huffcode[p]; /* minimum code of length l */ p += htbl->bits[l]; dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ } else { dtbl->maxcode[l] = -1; /* -1 if no codes of this length */ } } dtbl->maxcode[17] = 0xFFFFFL; /* ensures huff_DECODE terminates */ /* Compute lookahead tables to speed up decoding. * First we set all the table entries to 0, indicating "too long"; * then we iterate through the Huffman codes that are short enough and * fill in all the entries that correspond to bit sequences starting * with that code. */ MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits)); p = 0; for (l = 1; l <= HUFF_LOOKAHEAD; l++) { for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { /* l = current code's length, p = its index in huffcode[] & huffval[]. */ /* Generate left-justified code followed by all possible bit sequences */ lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { dtbl->look_nbits[lookbits] = l; dtbl->look_sym[lookbits] = htbl->huffval[p]; lookbits++; } } } } /* * Code for extracting the next N bits from the input stream. * (N never exceeds 15 for JPEG data.) * This needs to go as fast as possible! * * We read source bytes into get_buffer and dole out bits as needed. * If get_buffer already contains enough bits, they are fetched in-line * by the macros check_bit_buffer and get_bits. When there aren't enough * bits, fill_bit_buffer is called; it will attempt to fill get_buffer to * the "high water mark" (not just to the number of bits needed; this reduces * the function-call overhead cost of entering fill_bit_buffer). * Note that fill_bit_buffer may return FALSE to indicate suspension. * On TRUE return, fill_bit_buffer guarantees that get_buffer contains * at least the requested number of bits --- dummy zeroes are inserted if * necessary. * * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width * of get_buffer to be used. (On machines with wider words, an even larger * buffer could be used.) However, on some machines 32-bit shifts are * quite slow and take time proportional to the number of places shifted. * (This is true with most PC compilers, for instance.) In this case it may * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the * average shift distance at the cost of more calls to fill_bit_buffer. */ #ifdef SLOW_SHIFT_32 #define MIN_GET_BITS 15 /* minimum allowable value */ #else #define MIN_GET_BITS 25 /* max value for 32-bit get_buffer */ #endif LOCAL boolean fill_bit_buffer (working_state * state, int nbits) /* Load up the bit buffer to a depth of at least nbits */ { /* Copy heavily used state fields into locals (hopefully registers) */ register const JOCTET * next_input_byte = state->next_input_byte; register size_t bytes_in_buffer = state->bytes_in_buffer; register INT32 get_buffer = state->cur.get_buffer; register int bits_left = state->cur.bits_left; register int c; /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ /* (It is assumed that no request will be for more than that many bits.) */ while (bits_left < MIN_GET_BITS) { /* Attempt to read a byte */ if (state->unread_marker != 0) goto no_more_data; /* can't advance past a marker */ if (bytes_in_buffer == 0) { if (! (*state->cinfo->src->fill_input_buffer) (state->cinfo)) return FALSE; next_input_byte = state->cinfo->src->next_input_byte; bytes_in_buffer = state->cinfo->src->bytes_in_buffer; } bytes_in_buffer--; c = GETJOCTET(*next_input_byte++); /* If it's 0xFF, check and discard stuffed zero byte */ if (c == 0xFF) { do { if (bytes_in_buffer == 0) { if (! (*state->cinfo->src->fill_input_buffer) (state->cinfo)) return FALSE; next_input_byte = state->cinfo->src->next_input_byte; bytes_in_buffer = state->cinfo->src->bytes_in_buffer; } bytes_in_buffer--; c = GETJOCTET(*next_input_byte++); } while (c == 0xFF); if (c == 0) { /* Found FF/00, which represents an FF data byte */ c = 0xFF; } else { /* Oops, it's actually a marker indicating end of compressed data. */ /* Better put it back for use later */ state->unread_marker = c; no_more_data: /* There should be enough bits still left in the data segment; */ /* if so, just break out of the outer while loop. */ if (bits_left >= nbits) break; /* Uh-oh. Report corrupted data to user and stuff zeroes into * the data stream, so that we can produce some kind of image. * Note that this will be repeated for each byte demanded for the * rest of the segment; this is slow but not unreasonably so. * The main thing is to avoid getting a zillion warnings, hence * we use a flag to ensure that only one warning appears. */ if (! ((huff_entropy_ptr) state->cinfo->entropy)->printed_eod) { WARNMS(state->cinfo, JWRN_HIT_MARKER); ((huff_entropy_ptr) state->cinfo->entropy)->printed_eod = TRUE; } c = 0; /* insert a zero byte into bit buffer */ } } /* OK, load c into get_buffer */ get_buffer = (get_buffer << 8) | c; bits_left += 8; } /* Unload the local registers */ state->next_input_byte = next_input_byte; state->bytes_in_buffer = bytes_in_buffer; state->cur.get_buffer = get_buffer; state->cur.bits_left = bits_left; return TRUE; } /* * These macros provide the in-line portion of bit fetching. * Use check_bit_buffer to ensure there are N bits in get_buffer * before using get_bits, peek_bits, or drop_bits. * check_bit_buffer(state,n,action); * Ensure there are N bits in get_buffer; if suspend, take action. * val = get_bits(state,n); * Fetch next N bits. * val = peek_bits(state,n); * Fetch next N bits without removing them from the buffer. * drop_bits(state,n); * Discard next N bits. * The value N should be a simple variable, not an expression, because it * is evaluated multiple times. */ #define check_bit_buffer(state,nbits,action) \ { if ((state).cur.bits_left < (nbits)) \ if (! fill_bit_buffer(&(state), nbits)) \ { action; } } #define get_bits(state,nbits) \ (((int) ((state).cur.get_buffer >> ((state).cur.bits_left -= (nbits)))) & ((1<<(nbits))-1)) #define peek_bits(state,nbits) \ (((int) ((state).cur.get_buffer >> ((state).cur.bits_left - (nbits)))) & ((1<<(nbits))-1)) #define drop_bits(state,nbits) \ ((state).cur.bits_left -= (nbits)) /* * Code for extracting next Huffman-coded symbol from input bit stream. * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits * without looping. Usually, more than 95% of the Huffman codes will be 8 * or fewer bits long. The few overlength codes are handled with a loop. * The primary case is made a macro for speed reasons; the secondary * routine slow_DECODE is rarely entered and need not be inline code. * * Notes about the huff_DECODE macro: * 1. Near the end of the data segment, we may fail to get enough bits * for a lookahead. In that case, we do it the hard way. * 2. If the lookahead table contains no entry, the next code must be * more than HUFF_LOOKAHEAD bits long. * 3. slow_DECODE returns -1 if forced to suspend. */ #define huff_DECODE(result,state,htbl,donelabel) \ { if (state.cur.bits_left < HUFF_LOOKAHEAD) { \ if (! fill_bit_buffer(&state, 0)) return FALSE; \ if (state.cur.bits_left < HUFF_LOOKAHEAD) { \ if ((result = slow_DECODE(&state, htbl, 1)) < 0) return FALSE; \ goto donelabel; \ } \ } \ { register int nb, look; \ look = peek_bits(state, HUFF_LOOKAHEAD); \ if ((nb = htbl->look_nbits[look]) != 0) { \ drop_bits(state, nb); \ result = htbl->look_sym[look]; \ } else { \ if ((result = slow_DECODE(&state, htbl, HUFF_LOOKAHEAD+1)) < 0) \ return FALSE; \ } \ } \ donelabel:; \ } LOCAL int slow_DECODE (working_state * state, D_DERIVED_TBL * htbl, int min_bits) { register int l = min_bits; register INT32 code; /* huff_DECODE has determined that the code is at least min_bits */ /* bits long, so fetch that many bits in one swoop. */ check_bit_buffer(*state, l, return -1); code = get_bits(*state, l); /* Collect the rest of the Huffman code one bit at a time. */ /* This is per Figure F.16 in the JPEG spec. */ while (code > htbl->maxcode[l]) { code <<= 1; check_bit_buffer(*state, 1, return -1); code |= get_bits(*state, 1); l++; } /* With garbage input we may reach the sentinel value l = 17. */ if (l > 16) { WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); return 0; /* fake a zero as the safest result */ } return htbl->pub->huffval[ htbl->valptr[l] + ((int) (code - htbl->mincode[l])) ]; } /* Figure F.12: extend sign bit. * On some machines, a shift and add will be faster than a table lookup. */ #ifdef AVOID_TABLES #define huff_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x)) #else #define huff_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) static const int extend_test[16] = /* entry n is 2**(n-1) */ { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 }; #endif /* AVOID_TABLES */ /* * Check for a restart marker & resynchronize decoder. * Returns FALSE if must suspend. */ LOCAL boolean process_restart (j_decompress_ptr cinfo) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; int ci; /* Throw away any unused bits remaining in bit buffer; */ /* include any full bytes in next_marker's count of discarded bytes */ cinfo->marker->discarded_bytes += entropy->saved.bits_left / 8; entropy->saved.bits_left = 0; /* Advance past the RSTn marker */ if (! (*cinfo->marker->read_restart_marker) (cinfo)) return FALSE; /* Re-initialize DC predictions to 0 */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) entropy->saved.last_dc_val[ci] = 0; /* Reset restart counter */ entropy->restarts_to_go = cinfo->restart_interval; entropy->printed_eod = FALSE; /* next segment can get another warning */ return TRUE; } /* ZAG[i] is the natural-order position of the i'th element of zigzag order. * If the incoming data is corrupted, decode_mcu could attempt to * reference values beyond the end of the array. To avoid a wild store, * we put some extra zeroes after the real entries. */ static const int ZAG[DCTSIZE2+16] = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63, 0, 0, 0, 0, 0, 0, 0, 0, /* extra entries in case k>63 below */ 0, 0, 0, 0, 0, 0, 0, 0 }; /* * Decode and return one MCU's worth of Huffman-compressed coefficients. * The coefficients are reordered from zigzag order into natural array order, * but are not dequantized. * * The i'th block of the MCU is stored into the block pointed to by * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER. * (Wholesale zeroing is usually a little faster than retail...) * * Returns FALSE if data source requested suspension. In that case no * changes have been made to permanent state. (Exception: some output * coefficients may already have been assigned. This is harmless for * this module, but would not work for decoding progressive JPEG.) */ METHODDEF boolean decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; register int s, k, r; int blkn, ci; JBLOCKROW block; working_state state; D_DERIVED_TBL * dctbl; D_DERIVED_TBL * actbl; jpeg_component_info * compptr; /* Process restart marker if needed; may have to suspend */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) if (! process_restart(cinfo)) return FALSE; } /* Load up working state */ state.unread_marker = cinfo->unread_marker; state.next_input_byte = cinfo->src->next_input_byte; state.bytes_in_buffer = cinfo->src->bytes_in_buffer; ASSIGN_STATE(state.cur, entropy->saved); state.cinfo = cinfo; /* Outer loop handles each block in the MCU */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { block = MCU_data[blkn]; ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; dctbl = entropy->dc_derived_tbls[compptr->dc_tbl_no]; actbl = entropy->ac_derived_tbls[compptr->ac_tbl_no]; /* Decode a single block's worth of coefficients */ /* Section F.2.2.1: decode the DC coefficient difference */ huff_DECODE(s, state, dctbl, label1); if (s) { check_bit_buffer(state, s, return FALSE); r = get_bits(state, s); s = huff_EXTEND(r, s); } /* Shortcut if component's values are not interesting */ if (! compptr->component_needed) goto skip_ACs; /* Convert DC difference to actual value, update last_dc_val */ s += state.cur.last_dc_val[ci]; state.cur.last_dc_val[ci] = s; /* Output the DC coefficient (assumes ZAG[0] = 0) */ (*block)[0] = (JCOEF) s; /* Do we need to decode the AC coefficients for this component? */ if (compptr->DCT_scaled_size > 1) { /* Section F.2.2.2: decode the AC coefficients */ /* Since zeroes are skipped, output area must be cleared beforehand */ for (k = 1; k < DCTSIZE2; k++) { huff_DECODE(s, state, actbl, label2); r = s >> 4; s &= 15; if (s) { k += r; check_bit_buffer(state, s, return FALSE); r = get_bits(state, s); s = huff_EXTEND(r, s); /* Output coefficient in natural (dezigzagged) order */ (*block)[ZAG[k]] = (JCOEF) s; } else { if (r != 15) break; k += 15; } } } else { skip_ACs: /* Section F.2.2.2: decode the AC coefficients */ /* In this path we just discard the values */ for (k = 1; k < DCTSIZE2; k++) { huff_DECODE(s, state, actbl, label3); r = s >> 4; s &= 15; if (s) { k += r; check_bit_buffer(state, s, return FALSE); drop_bits(state, s); } else { if (r != 15) break; k += 15; } } } } /* Completed MCU, so update state */ cinfo->unread_marker = state.unread_marker; cinfo->src->next_input_byte = state.next_input_byte; cinfo->src->bytes_in_buffer = state.bytes_in_buffer; ASSIGN_STATE(entropy->saved, state.cur); /* Account for restart interval (no-op if not using restarts) */ entropy->restarts_to_go--; return TRUE; } /* * Module initialization routine for Huffman entropy decoding. */ GLOBAL void jinit_huff_decoder (j_decompress_ptr cinfo) { huff_entropy_ptr entropy; int i; entropy = (huff_entropy_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(huff_entropy_decoder)); cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; entropy->pub.start_pass = start_pass_huff_decoder; entropy->pub.decode_mcu = decode_mcu; /* Mark tables unallocated */ for (i = 0; i < NUM_HUFF_TBLS; i++) { entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; } }