/* * jdhuff.c * * Copyright (C) 1991, 1992, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains Huffman entropy decoding routines. * These routines are invoked via the methods entropy_decode * and entropy_decode_init/term. */ #include "jinclude.h" /* Static variables to avoid passing 'round extra parameters */ static decompress_info_ptr dcinfo; static INT32 get_buffer; /* current bit-extraction buffer */ static int bits_left; /* # of unused bits in it */ static boolean printed_eod; /* flag to suppress multiple end-of-data msgs */ LOCAL void fix_huff_tbl (HUFF_TBL * htbl) /* Compute derived values for a Huffman table */ { int p, i, l, si; char huffsize[257]; UINT16 huffcode[257]; UINT16 code; /* Figure C.1: make table of Huffman code length for each symbol */ /* Note that this is in code-length order. */ p = 0; for (l = 1; l <= 16; l++) { for (i = 1; i <= (int) htbl->bits[l]; i++) huffsize[p++] = (char) l; } huffsize[p] = 0; /* Figure C.2: generate the codes themselves */ /* Note that this is in code-length order. */ code = 0; si = huffsize[0]; p = 0; while (huffsize[p]) { while (((int) huffsize[p]) == si) { huffcode[p++] = code; code++; } code <<= 1; si++; } /* We don't bother to fill in the encoding tables ehufco[] and ehufsi[], */ /* since they are not used for decoding. */ /* Figure F.15: generate decoding tables */ p = 0; for (l = 1; l <= 16; l++) { if (htbl->bits[l]) { htbl->valptr[l] = p; /* huffval[] index of 1st sym of code len l */ htbl->mincode[l] = huffcode[p]; /* minimum code of length l */ p += htbl->bits[l]; htbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ } else { htbl->maxcode[l] = -1; } } htbl->maxcode[17] = 0xFFFFFL; /* ensures huff_DECODE terminates */ } /* * Code for extracting the next N bits from the input stream. * (N never exceeds 15 for JPEG data.) * This needs to go as fast as possible! * * We read source bytes into get_buffer and dole out bits as needed. * If get_buffer already contains enough bits, they are fetched in-line * by the macros get_bits() and get_bit(). When there aren't enough bits, * fill_bit_buffer is called; it will attempt to fill get_buffer to the * "high water mark", then extract the desired number of bits. The idea, * of course, is to minimize the function-call overhead cost of entering * fill_bit_buffer. * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width * of get_buffer to be used. (On machines with wider words, an even larger * buffer could be used.) However, on some machines 32-bit shifts are * relatively slow and take time proportional to the number of places shifted. * (This is true with most PC compilers, for instance.) In this case it may * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the * average shift distance at the cost of more calls to fill_bit_buffer. */ #ifdef SLOW_SHIFT_32 #define MIN_GET_BITS 15 /* minimum allowable value */ #else #define MIN_GET_BITS 25 /* max value for 32-bit get_buffer */ #endif static const int bmask[16] = /* bmask[n] is mask for n rightmost bits */ { 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF }; LOCAL int fill_bit_buffer (int nbits) /* Load up the bit buffer and do get_bits(nbits) */ { /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ while (bits_left < MIN_GET_BITS) { register int c = JGETC(dcinfo); /* If it's 0xFF, check and discard stuffed zero byte */ if (c == 0xFF) { int c2 = JGETC(dcinfo); if (c2 != 0) { /* Oops, it's actually a marker indicating end of compressed data. */ /* Better put it back for use later */ JUNGETC(c2,dcinfo); JUNGETC(c,dcinfo); /* There should be enough bits still left in the data segment; */ /* if so, just break out of the while loop. */ if (bits_left >= nbits) break; /* Uh-oh. Report corrupted data to user and stuff zeroes into * the data stream, so we can produce some kind of image. * Note that this will be repeated for each byte demanded for the * rest of the segment; this is a bit slow but not unreasonably so. * The main thing is to avoid getting a zillion warnings, hence: */ if (! printed_eod) { WARNMS(dcinfo->emethods, "Corrupt JPEG data: premature end of data segment"); printed_eod = TRUE; } c = 0; /* insert a zero byte into bit buffer */ } } /* OK, load c into get_buffer */ get_buffer = (get_buffer << 8) | c; bits_left += 8; } /* Having filled get_buffer, extract desired bits (this simplifies macros) */ bits_left -= nbits; return ((int) (get_buffer >> bits_left)) & bmask[nbits]; } /* Macros to make things go at some speed! */ /* NB: parameter to get_bits should be simple variable, not expression */ #define get_bits(nbits) \ (bits_left >= (nbits) ? \ ((int) (get_buffer >> (bits_left -= (nbits)))) & bmask[nbits] : \ fill_bit_buffer(nbits)) #define get_bit() \ (bits_left ? \ ((int) (get_buffer >> (--bits_left))) & 1 : \ fill_bit_buffer(1)) /* Figure F.16: extract next coded symbol from input stream */ INLINE LOCAL int huff_DECODE (HUFF_TBL * htbl) { register int l; register INT32 code; code = get_bit(); l = 1; while (code > htbl->maxcode[l]) { code = (code << 1) | get_bit(); l++; } /* With garbage input we may reach the sentinel value l = 17. */ if (l > 16) { WARNMS(dcinfo->emethods, "Corrupt JPEG data: bad Huffman code"); return 0; /* fake a zero as the safest result */ } return htbl->huffval[ htbl->valptr[l] + ((int) (code - htbl->mincode[l])) ]; } /* Figure F.12: extend sign bit */ #define huff_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) static const int extend_test[16] = /* entry n is 2**(n-1) */ { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 }; /* * Initialize for a Huffman-compressed scan. * This is invoked after reading the SOS marker. */ METHODDEF void huff_decoder_init (decompress_info_ptr cinfo) { short ci; jpeg_component_info * compptr; /* Initialize static variables */ dcinfo = cinfo; bits_left = 0; printed_eod = FALSE; for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* Make sure requested tables are present */ if (cinfo->dc_huff_tbl_ptrs[compptr->dc_tbl_no] == NULL || cinfo->ac_huff_tbl_ptrs[compptr->ac_tbl_no] == NULL) ERREXIT(cinfo->emethods, "Use of undefined Huffman table"); /* Compute derived values for Huffman tables */ /* We may do this more than once for same table, but it's not a big deal */ fix_huff_tbl(cinfo->dc_huff_tbl_ptrs[compptr->dc_tbl_no]); fix_huff_tbl(cinfo->ac_huff_tbl_ptrs[compptr->ac_tbl_no]); /* Initialize DC predictions to 0 */ cinfo->last_dc_val[ci] = 0; } /* Initialize restart stuff */ cinfo->restarts_to_go = cinfo->restart_interval; cinfo->next_restart_num = 0; } /* * Check for a restart marker & resynchronize decoder. */ LOCAL void process_restart (decompress_info_ptr cinfo) { int c, nbytes; short ci; /* Throw away any unused bits remaining in bit buffer */ nbytes = bits_left / 8; /* count any full bytes loaded into buffer */ bits_left = 0; printed_eod = FALSE; /* next segment can get another warning */ /* Scan for next JPEG marker */ do { do { /* skip any non-FF bytes */ nbytes++; c = JGETC(cinfo); } while (c != 0xFF); do { /* skip any duplicate FFs */ /* we don't increment nbytes here since extra FFs are legal */ c = JGETC(cinfo); } while (c == 0xFF); } while (c == 0); /* repeat if it was a stuffed FF/00 */ if (nbytes != 1) WARNMS2(cinfo->emethods, "Corrupt JPEG data: %d extraneous bytes before marker 0x%02x", nbytes-1, c); if (c != (RST0 + cinfo->next_restart_num)) { /* Uh-oh, the restart markers have been messed up too. */ /* Let the file-format module try to figure out how to resync. */ (*cinfo->methods->resync_to_restart) (cinfo, c); } else TRACEMS1(cinfo->emethods, 2, "RST%d", cinfo->next_restart_num); /* Re-initialize DC predictions to 0 */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) cinfo->last_dc_val[ci] = 0; /* Update restart state */ cinfo->restarts_to_go = cinfo->restart_interval; cinfo->next_restart_num = (cinfo->next_restart_num + 1) & 7; } /* ZAG[i] is the natural-order position of the i'th element of zigzag order. * If the incoming data is corrupted, huff_decode_mcu could attempt to * reference values beyond the end of the array. To avoid a wild store, * we put some extra zeroes after the real entries. */ static const short ZAG[DCTSIZE2+16] = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63, 0, 0, 0, 0, 0, 0, 0, 0, /* extra entries in case k>63 below */ 0, 0, 0, 0, 0, 0, 0, 0 }; /* * Decode and return one MCU's worth of Huffman-compressed coefficients. * This routine also handles quantization descaling and zigzag reordering * of coefficient values. * * The i'th block of the MCU is stored into the block pointed to by * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER. * (Wholesale zeroing is usually a little faster than retail...) */ METHODDEF void huff_decode_mcu (decompress_info_ptr cinfo, JBLOCKROW *MCU_data) { register int s, k, r; short blkn, ci; register JBLOCKROW block; register QUANT_TBL_PTR quanttbl; HUFF_TBL *dctbl; HUFF_TBL *actbl; jpeg_component_info * compptr; /* Account for restart interval, process restart marker if needed */ if (cinfo->restart_interval) { if (cinfo->restarts_to_go == 0) process_restart(cinfo); cinfo->restarts_to_go--; } /* Outer loop handles each block in the MCU */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { block = MCU_data[blkn]; ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; quanttbl = cinfo->quant_tbl_ptrs[compptr->quant_tbl_no]; actbl = cinfo->ac_huff_tbl_ptrs[compptr->ac_tbl_no]; dctbl = cinfo->dc_huff_tbl_ptrs[compptr->dc_tbl_no]; /* Decode a single block's worth of coefficients */ /* Section F.2.2.1: decode the DC coefficient difference */ s = huff_DECODE(dctbl); if (s) { r = get_bits(s); s = huff_EXTEND(r, s); } /* Convert DC difference to actual value, update last_dc_val */ s += cinfo->last_dc_val[ci]; cinfo->last_dc_val[ci] = (JCOEF) s; /* Descale and output the DC coefficient (assumes ZAG[0] = 0) */ (*block)[0] = (JCOEF) (((JCOEF) s) * quanttbl[0]); /* Section F.2.2.2: decode the AC coefficients */ /* Since zero values are skipped, output area must be zeroed beforehand */ for (k = 1; k < DCTSIZE2; k++) { r = huff_DECODE(actbl); s = r & 15; r = r >> 4; if (s) { k += r; r = get_bits(s); s = huff_EXTEND(r, s); /* Descale coefficient and output in natural (dezigzagged) order */ (*block)[ZAG[k]] = (JCOEF) (((JCOEF) s) * quanttbl[k]); } else { if (r != 15) break; k += 15; } } } } /* * Finish up at the end of a Huffman-compressed scan. */ METHODDEF void huff_decoder_term (decompress_info_ptr cinfo) { /* No work needed */ } /* * The method selection routine for Huffman entropy decoding. */ GLOBAL void jseldhuffman (decompress_info_ptr cinfo) { if (! cinfo->arith_code) { cinfo->methods->entropy_decode_init = huff_decoder_init; cinfo->methods->entropy_decode = huff_decode_mcu; cinfo->methods->entropy_decode_term = huff_decoder_term; } }