/* * jcsample.c * * Copyright (C) 1991, 1992, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains downsampling routines. * These routines are invoked via the downsample and * downsample_init/term methods. * * An excellent reference for image resampling is * Digital Image Warping, George Wolberg, 1990. * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. * * The downsampling algorithm used here is a simple average of the source * pixels covered by the output pixel. The hi-falutin sampling literature * refers to this as a "box filter". In general the characteristics of a box * filter are not very good, but for the specific cases we normally use (1:1 * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not * nearly so bad. If you intend to use other sampling ratios, you'd be well * advised to improve this code. * * A simple input-smoothing capability is provided. This is mainly intended * for cleaning up color-dithered GIF input files (if you find it inadequate, * we suggest using an external filtering program such as pnmconvol). When * enabled, each input pixel P is replaced by a weighted sum of itself and its * eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF, * where SF = (smoothing_factor / 1024). * Currently, smoothing is only supported for 2h2v sampling factors. */ #include "jinclude.h" /* * Initialize for downsampling a scan. */ METHODDEF void downsample_init (compress_info_ptr cinfo) { /* no work for now */ } /* * Downsample pixel values of a single component. * This version handles arbitrary integral sampling ratios, without smoothing. * Note that this version is not actually used for customary sampling ratios. */ METHODDEF void int_downsample (compress_info_ptr cinfo, int which_component, long input_cols, int input_rows, long output_cols, int output_rows, JSAMPARRAY above, JSAMPARRAY input_data, JSAMPARRAY below, JSAMPARRAY output_data) { jpeg_component_info * compptr = cinfo->cur_comp_info[which_component]; int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v; long outcol, outcol_h; /* outcol_h == outcol*h_expand */ JSAMPROW inptr, outptr; INT32 outvalue; #ifdef DEBUG /* for debugging pipeline controller */ if (output_rows != compptr->v_samp_factor || input_rows != cinfo->max_v_samp_factor || (output_cols % compptr->h_samp_factor) != 0 || (input_cols % cinfo->max_h_samp_factor) != 0 || input_cols*compptr->h_samp_factor != output_cols*cinfo->max_h_samp_factor) ERREXIT(cinfo->emethods, "Bogus downsample parameters"); #endif h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor; v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor; numpix = h_expand * v_expand; numpix2 = numpix/2; inrow = 0; for (outrow = 0; outrow < output_rows; outrow++) { outptr = output_data[outrow]; for (outcol = 0, outcol_h = 0; outcol < output_cols; outcol++, outcol_h += h_expand) { outvalue = 0; for (v = 0; v < v_expand; v++) { inptr = input_data[inrow+v] + outcol_h; for (h = 0; h < h_expand; h++) { outvalue += (INT32) GETJSAMPLE(*inptr++); } } *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix); } inrow += v_expand; } } /* * Downsample pixel values of a single component. * This version handles the common case of 2:1 horizontal and 1:1 vertical, * without smoothing. */ METHODDEF void h2v1_downsample (compress_info_ptr cinfo, int which_component, long input_cols, int input_rows, long output_cols, int output_rows, JSAMPARRAY above, JSAMPARRAY input_data, JSAMPARRAY below, JSAMPARRAY output_data) { int outrow; long outcol; register JSAMPROW inptr, outptr; #ifdef DEBUG /* for debugging pipeline controller */ jpeg_component_info * compptr = cinfo->cur_comp_info[which_component]; if (output_rows != compptr->v_samp_factor || input_rows != cinfo->max_v_samp_factor || (output_cols % compptr->h_samp_factor) != 0 || (input_cols % cinfo->max_h_samp_factor) != 0 || input_cols*compptr->h_samp_factor != output_cols*cinfo->max_h_samp_factor) ERREXIT(cinfo->emethods, "Bogus downsample parameters"); #endif for (outrow = 0; outrow < output_rows; outrow++) { outptr = output_data[outrow]; inptr = input_data[outrow]; for (outcol = 0; outcol < output_cols; outcol++) { *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1]) + 1) >> 1); inptr += 2; } } } /* * Downsample pixel values of a single component. * This version handles the standard case of 2:1 horizontal and 2:1 vertical, * without smoothing. */ METHODDEF void h2v2_downsample (compress_info_ptr cinfo, int which_component, long input_cols, int input_rows, long output_cols, int output_rows, JSAMPARRAY above, JSAMPARRAY input_data, JSAMPARRAY below, JSAMPARRAY output_data) { int inrow, outrow; long outcol; register JSAMPROW inptr0, inptr1, outptr; #ifdef DEBUG /* for debugging pipeline controller */ jpeg_component_info * compptr = cinfo->cur_comp_info[which_component]; if (output_rows != compptr->v_samp_factor || input_rows != cinfo->max_v_samp_factor || (output_cols % compptr->h_samp_factor) != 0 || (input_cols % cinfo->max_h_samp_factor) != 0 || input_cols*compptr->h_samp_factor != output_cols*cinfo->max_h_samp_factor) ERREXIT(cinfo->emethods, "Bogus downsample parameters"); #endif inrow = 0; for (outrow = 0; outrow < output_rows; outrow++) { outptr = output_data[outrow]; inptr0 = input_data[inrow]; inptr1 = input_data[inrow+1]; for (outcol = 0; outcol < output_cols; outcol++) { *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]) + 2) >> 2); inptr0 += 2; inptr1 += 2; } inrow += 2; } } /* * Downsample pixel values of a single component. * This version handles the special case of a full-size component, * without smoothing. */ METHODDEF void fullsize_downsample (compress_info_ptr cinfo, int which_component, long input_cols, int input_rows, long output_cols, int output_rows, JSAMPARRAY above, JSAMPARRAY input_data, JSAMPARRAY below, JSAMPARRAY output_data) { #ifdef DEBUG /* for debugging pipeline controller */ if (input_cols != output_cols || input_rows != output_rows) ERREXIT(cinfo->emethods, "Pipeline controller messed up"); #endif jcopy_sample_rows(input_data, 0, output_data, 0, output_rows, output_cols); } #ifdef INPUT_SMOOTHING_SUPPORTED /* * Downsample pixel values of a single component. * This version handles the standard case of 2:1 horizontal and 2:1 vertical, * with smoothing. */ METHODDEF void h2v2_smooth_downsample (compress_info_ptr cinfo, int which_component, long input_cols, int input_rows, long output_cols, int output_rows, JSAMPARRAY above, JSAMPARRAY input_data, JSAMPARRAY below, JSAMPARRAY output_data) { int inrow, outrow; long colctr; register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr; INT32 membersum, neighsum, memberscale, neighscale; #ifdef DEBUG /* for debugging pipeline controller */ jpeg_component_info * compptr = cinfo->cur_comp_info[which_component]; if (output_rows != compptr->v_samp_factor || input_rows != cinfo->max_v_samp_factor || (output_cols % compptr->h_samp_factor) != 0 || (input_cols % cinfo->max_h_samp_factor) != 0 || input_cols*compptr->h_samp_factor != output_cols*cinfo->max_h_samp_factor) ERREXIT(cinfo->emethods, "Bogus downsample parameters"); #endif /* We don't bother to form the individual "smoothed" input pixel values; * we can directly compute the output which is the average of the four * smoothed values. Each of the four member pixels contributes a fraction * (1-8*SF) to its own smoothed image and a fraction SF to each of the three * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final * output. The four corner-adjacent neighbor pixels contribute a fraction * SF to just one smoothed pixel, or SF/4 to the final output; while the * eight edge-adjacent neighbors contribute SF to each of two smoothed * pixels, or SF/2 overall. In order to use integer arithmetic, these * factors are scaled by 2^16 = 65536. * Also recall that SF = smoothing_factor / 1024. */ memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */ neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */ inrow = 0; for (outrow = 0; outrow < output_rows; outrow++) { outptr = output_data[outrow]; inptr0 = input_data[inrow]; inptr1 = input_data[inrow+1]; if (inrow == 0) above_ptr = above[input_rows-1]; else above_ptr = input_data[inrow-1]; if (inrow >= input_rows-2) below_ptr = below[0]; else below_ptr = input_data[inrow+2]; /* Special case for first column: pretend column -1 is same as column 0 */ membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) + GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]); neighsum += neighsum; neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) + GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]); membersum = membersum * memberscale + neighsum * neighscale; *outptr++ = (JSAMPLE) ((membersum + 32768L) >> 16); inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; for (colctr = output_cols - 2; colctr > 0; colctr--) { /* sum of pixels directly mapped to this output element */ membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); /* sum of edge-neighbor pixels */ neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) + GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]); /* The edge-neighbors count twice as much as corner-neighbors */ neighsum += neighsum; /* Add in the corner-neighbors */ neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) + GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]); /* form final output scaled up by 2^16 */ membersum = membersum * memberscale + neighsum * neighscale; /* round, descale and output it */ *outptr++ = (JSAMPLE) ((membersum + 32768L) >> 16); inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; } /* Special case for last column */ membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) + GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]); neighsum += neighsum; neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) + GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]); membersum = membersum * memberscale + neighsum * neighscale; *outptr = (JSAMPLE) ((membersum + 32768L) >> 16); inrow += 2; } } /* * Downsample pixel values of a single component. * This version handles the special case of a full-size component, * with smoothing. */ METHODDEF void fullsize_smooth_downsample (compress_info_ptr cinfo, int which_component, long input_cols, int input_rows, long output_cols, int output_rows, JSAMPARRAY above, JSAMPARRAY input_data, JSAMPARRAY below, JSAMPARRAY output_data) { int outrow; long colctr; register JSAMPROW inptr, above_ptr, below_ptr, outptr; INT32 membersum, neighsum, memberscale, neighscale; int colsum, lastcolsum, nextcolsum; #ifdef DEBUG /* for debugging pipeline controller */ if (input_cols != output_cols || input_rows != output_rows) ERREXIT(cinfo->emethods, "Pipeline controller messed up"); #endif /* Each of the eight neighbor pixels contributes a fraction SF to the * smoothed pixel, while the main pixel contributes (1-8*SF). In order * to use integer arithmetic, these factors are multiplied by 2^16 = 65536. * Also recall that SF = smoothing_factor / 1024. */ memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */ neighscale = cinfo->smoothing_factor * 64; /* scaled SF */ for (outrow = 0; outrow < output_rows; outrow++) { outptr = output_data[outrow]; inptr = input_data[outrow]; if (outrow == 0) above_ptr = above[input_rows-1]; else above_ptr = input_data[outrow-1]; if (outrow >= input_rows-1) below_ptr = below[0]; else below_ptr = input_data[outrow+1]; /* Special case for first column */ colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) + GETJSAMPLE(*inptr); membersum = GETJSAMPLE(*inptr++); nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + GETJSAMPLE(*inptr); neighsum = colsum + (colsum - membersum) + nextcolsum; membersum = membersum * memberscale + neighsum * neighscale; *outptr++ = (JSAMPLE) ((membersum + 32768L) >> 16); lastcolsum = colsum; colsum = nextcolsum; for (colctr = output_cols - 2; colctr > 0; colctr--) { membersum = GETJSAMPLE(*inptr++); above_ptr++; below_ptr++; nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + GETJSAMPLE(*inptr); neighsum = lastcolsum + (colsum - membersum) + nextcolsum; membersum = membersum * memberscale + neighsum * neighscale; *outptr++ = (JSAMPLE) ((membersum + 32768L) >> 16); lastcolsum = colsum; colsum = nextcolsum; } /* Special case for last column */ membersum = GETJSAMPLE(*inptr); neighsum = lastcolsum + (colsum - membersum) + colsum; membersum = membersum * memberscale + neighsum * neighscale; *outptr = (JSAMPLE) ((membersum + 32768L) >> 16); } } #endif /* INPUT_SMOOTHING_SUPPORTED */ /* * Clean up after a scan. */ METHODDEF void downsample_term (compress_info_ptr cinfo) { /* no work for now */ } /* * The method selection routine for downsampling. * Note that we must select a routine for each component. */ GLOBAL void jseldownsample (compress_info_ptr cinfo) { short ci; jpeg_component_info * compptr; boolean smoothok = TRUE; if (cinfo->CCIR601_sampling) ERREXIT(cinfo->emethods, "CCIR601 downsampling not implemented yet"); for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; if (compptr->h_samp_factor == cinfo->max_h_samp_factor && compptr->v_samp_factor == cinfo->max_v_samp_factor) { #ifdef INPUT_SMOOTHING_SUPPORTED if (cinfo->smoothing_factor) cinfo->methods->downsample[ci] = fullsize_smooth_downsample; else #endif cinfo->methods->downsample[ci] = fullsize_downsample; } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor && compptr->v_samp_factor == cinfo->max_v_samp_factor) { smoothok = FALSE; cinfo->methods->downsample[ci] = h2v1_downsample; } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor && compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) { #ifdef INPUT_SMOOTHING_SUPPORTED if (cinfo->smoothing_factor) cinfo->methods->downsample[ci] = h2v2_smooth_downsample; else #endif cinfo->methods->downsample[ci] = h2v2_downsample; } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 && (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) { smoothok = FALSE; cinfo->methods->downsample[ci] = int_downsample; } else ERREXIT(cinfo->emethods, "Fractional downsampling not implemented yet"); } #ifdef INPUT_SMOOTHING_SUPPORTED if (cinfo->smoothing_factor && !smoothok) TRACEMS(cinfo->emethods, 0, "Smoothing not supported with nonstandard sampling ratios"); #endif cinfo->methods->downsample_init = downsample_init; cinfo->methods->downsample_term = downsample_term; }