/* * jdcoefct.c * * Copyright (C) 1994, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains the coefficient buffer controller for decompression. * This controller is the top level of the JPEG decompressor proper. * The coefficient buffer lies between entropy decoding and inverse-DCT steps. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* Private buffer controller object */ typedef struct { struct jpeg_d_coef_controller pub; /* public fields */ JDIMENSION MCU_col_num; /* saves next MCU column to process */ JDIMENSION MCU_row_num; /* keep track of MCU row # within image */ /* In single-pass modes without block smoothing, it's sufficient to buffer * just one MCU (although this may prove a bit slow in practice). * We allocate a workspace of MAX_BLOCKS_IN_MCU coefficient blocks, * and let the entropy decoder write into that workspace each time. * (On 80x86, the workspace is FAR even though it's not really very big; * this is to keep the module interfaces unchanged when a large coefficient * buffer is necessary.) * In multi-pass modes, this array points to the current MCU's blocks * within the virtual arrays. */ JBLOCKROW MCU_buffer[MAX_BLOCKS_IN_MCU]; /* In multi-pass modes, we need a virtual block array for each component. */ jvirt_barray_ptr whole_image[MAX_COMPONENTS]; } my_coef_controller; typedef my_coef_controller * my_coef_ptr; /* Forward declarations */ METHODDEF boolean decompress_data JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); #ifdef D_MULTISCAN_FILES_SUPPORTED METHODDEF boolean decompress_read JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); METHODDEF boolean decompress_output JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); #endif /* * Initialize for a processing pass. */ METHODDEF void start_pass_coef (j_decompress_ptr cinfo, J_BUF_MODE pass_mode) { my_coef_ptr coef = (my_coef_ptr) cinfo->coef; coef->MCU_col_num = 0; coef->MCU_row_num = 0; switch (pass_mode) { case JBUF_PASS_THRU: if (coef->whole_image[0] != NULL) ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); coef->pub.decompress_data = decompress_data; break; #ifdef D_MULTISCAN_FILES_SUPPORTED case JBUF_SAVE_SOURCE: if (coef->whole_image[0] == NULL) ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); coef->pub.decompress_data = decompress_read; break; case JBUF_CRANK_DEST: if (coef->whole_image[0] == NULL) ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); coef->pub.decompress_data = decompress_output; break; #endif default: ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); break; } } /* * Process some data in the single-pass case. * Always attempts to emit one fully interleaved MCU row ("iMCU" row). * Returns TRUE if it completed a row, FALSE if not (suspension). * * NB: output_buf contains a plane for each component in image. * For single pass, this is the same as the components in the scan. */ METHODDEF boolean decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) { my_coef_ptr coef = (my_coef_ptr) cinfo->coef; JDIMENSION MCU_col_num; /* index of current MCU within row */ JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; JDIMENSION last_MCU_row = cinfo->MCU_rows_in_scan - 1; int blkn, ci, xindex, yindex, useful_width; JSAMPARRAY output_ptr; JDIMENSION start_col, output_col; jpeg_component_info *compptr; inverse_DCT_method_ptr inverse_DCT; /* Loop to process as much as one whole MCU row */ for (MCU_col_num = coef->MCU_col_num; MCU_col_num <= last_MCU_col; MCU_col_num++) { /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */ jzero_far((void FAR *) coef->MCU_buffer[0], (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK))); if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { /* Suspension forced; return with row unfinished */ coef->MCU_col_num = MCU_col_num; /* update my state */ return FALSE; } /* Determine where data should go in output_buf and do the IDCT thing. * We skip dummy blocks at the right and bottom edges (but blkn gets * incremented past them!). Note the inner loop relies on having * allocated the MCU_buffer[] blocks sequentially. */ blkn = 0; /* index of current DCT block within MCU */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* Don't bother to IDCT an uninteresting component. */ if (! compptr->component_needed) { blkn += compptr->MCU_blocks; continue; } inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index]; useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width : compptr->last_col_width; output_ptr = output_buf[ci]; start_col = MCU_col_num * compptr->MCU_sample_width; for (yindex = 0; yindex < compptr->MCU_height; yindex++) { if (coef->MCU_row_num < last_MCU_row || yindex < compptr->last_row_height) { output_col = start_col; for (xindex = 0; xindex < useful_width; xindex++) { (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) coef->MCU_buffer[blkn+xindex], output_ptr, output_col); output_col += compptr->DCT_scaled_size; } } blkn += compptr->MCU_width; output_ptr += compptr->DCT_scaled_size; } } } /* We finished the row successfully */ coef->MCU_col_num = 0; /* prepare for next row */ coef->MCU_row_num++; return TRUE; } #ifdef D_MULTISCAN_FILES_SUPPORTED /* * Process some data: handle an input pass for a multiple-scan file. * We read the equivalent of one fully interleaved MCU row ("iMCU" row) * per call, ie, v_samp_factor block rows for each component in the scan. * No data is returned; we just stash it in the virtual arrays. * * Returns TRUE if it completed a row, FALSE if not (suspension). * Currently, the suspension case is not supported. */ METHODDEF boolean decompress_read (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) { my_coef_ptr coef = (my_coef_ptr) cinfo->coef; JDIMENSION MCU_col_num; /* index of current MCU within row */ int blkn, ci, xindex, yindex, yoffset, num_MCU_rows; JDIMENSION total_width, remaining_rows, start_col; JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; JBLOCKROW buffer_ptr; jpeg_component_info *compptr; /* Align the virtual buffers for the components used in this scan. */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; buffer[ci] = (*cinfo->mem->access_virt_barray) ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], coef->MCU_row_num * compptr->v_samp_factor, TRUE); /* Entropy decoder expects buffer to be zeroed. */ total_width = (JDIMENSION) jround_up((long) compptr->width_in_blocks, (long) compptr->h_samp_factor); for (yindex = 0; yindex < compptr->v_samp_factor; yindex++) { jzero_far((void FAR *) buffer[ci][yindex], (size_t) (total_width * SIZEOF(JBLOCK))); } } /* In an interleaved scan, we process exactly one MCU row. * In a noninterleaved scan, we need to process v_samp_factor MCU rows, * each of which contains a single block row. */ if (cinfo->comps_in_scan == 1) { compptr = cinfo->cur_comp_info[0]; num_MCU_rows = compptr->v_samp_factor; /* but watch out for the bottom of the image */ remaining_rows = cinfo->MCU_rows_in_scan - coef->MCU_row_num * compptr->v_samp_factor; if (remaining_rows < (JDIMENSION) num_MCU_rows) num_MCU_rows = (int) remaining_rows; } else { num_MCU_rows = 1; } /* Loop to process one whole iMCU row */ for (yoffset = 0; yoffset < num_MCU_rows; yoffset++) { for (MCU_col_num = 0; MCU_col_num < cinfo->MCUs_per_row; MCU_col_num++) { /* Construct list of pointers to DCT blocks belonging to this MCU */ blkn = 0; /* index of current DCT block within MCU */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; start_col = MCU_col_num * compptr->MCU_width; for (yindex = 0; yindex < compptr->MCU_height; yindex++) { buffer_ptr = buffer[ci][yindex+yoffset] + start_col; for (xindex = 0; xindex < compptr->MCU_width; xindex++) { coef->MCU_buffer[blkn++] = buffer_ptr++; } } } /* Try to fetch the MCU. */ if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { ERREXIT(cinfo, JERR_CANT_SUSPEND); /* not supported */ } } } coef->MCU_row_num++; return TRUE; } /* * Process some data: output from the virtual arrays after reading is done. * Always emits one fully interleaved MCU row ("iMCU" row). * Always returns TRUE --- suspension is not possible. * * NB: output_buf contains a plane for each component in image. */ METHODDEF boolean decompress_output (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) { my_coef_ptr coef = (my_coef_ptr) cinfo->coef; JDIMENSION last_MCU_row = cinfo->total_iMCU_rows - 1; JDIMENSION block_num; int ci, block_row, block_rows; JBLOCKARRAY buffer; JBLOCKROW buffer_ptr; JSAMPARRAY output_ptr; JDIMENSION output_col; jpeg_component_info *compptr; inverse_DCT_method_ptr inverse_DCT; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Don't bother to IDCT an uninteresting component. */ if (! compptr->component_needed) continue; /* Align the virtual buffer for this component. */ buffer = (*cinfo->mem->access_virt_barray) ((j_common_ptr) cinfo, coef->whole_image[ci], coef->MCU_row_num * compptr->v_samp_factor, FALSE); /* Count non-dummy DCT block rows in this iMCU row. */ if (coef->MCU_row_num < last_MCU_row) block_rows = compptr->v_samp_factor; else { block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); if (block_rows == 0) block_rows = compptr->v_samp_factor; } inverse_DCT = cinfo->idct->inverse_DCT[ci]; output_ptr = output_buf[ci]; /* Loop over all DCT blocks to be processed. */ for (block_row = 0; block_row < block_rows; block_row++) { buffer_ptr = buffer[block_row]; output_col = 0; for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) { (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr, output_ptr, output_col); buffer_ptr++; output_col += compptr->DCT_scaled_size; } output_ptr += compptr->DCT_scaled_size; } } coef->MCU_row_num++; return TRUE; } #endif /* D_MULTISCAN_FILES_SUPPORTED */ /* * Initialize coefficient buffer controller. */ GLOBAL void jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer) { my_coef_ptr coef; int ci, i; jpeg_component_info *compptr; JBLOCKROW buffer; coef = (my_coef_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_coef_controller)); cinfo->coef = (struct jpeg_d_coef_controller *) coef; coef->pub.start_pass = start_pass_coef; /* Create the coefficient buffer. */ if (need_full_buffer) { #ifdef D_MULTISCAN_FILES_SUPPORTED /* Allocate a full-image virtual array for each component, */ /* padded to a multiple of samp_factor DCT blocks in each direction. */ /* Note memmgr implicitly pads the vertical direction. */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) ((j_common_ptr) cinfo, JPOOL_IMAGE, (JDIMENSION) jround_up((long) compptr->width_in_blocks, (long) compptr->h_samp_factor), compptr->height_in_blocks, (JDIMENSION) compptr->v_samp_factor); } #else ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); #endif } else { /* We only need a single-MCU buffer. */ buffer = (JBLOCKROW) (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); for (i = 0; i < MAX_BLOCKS_IN_MCU; i++) { coef->MCU_buffer[i] = buffer + i; } coef->whole_image[0] = NULL; /* flag for no virtual arrays */ } }