The Independent JPEG Group's JPEG software v9a

This commit is contained in:
Guido Vollbeding 2014-01-19 00:00:00 +00:00 committed by DRC
parent e7f88aec23
commit fc11193e7a
55 changed files with 2665 additions and 1168 deletions

View File

@ -1,7 +1,7 @@
# Makefile.in generated by automake 1.13.1 from Makefile.am.
# Makefile.in generated by automake 1.14.1 from Makefile.am.
# @configure_input@
# Copyright (C) 1994-2012 Free Software Foundation, Inc.
# Copyright (C) 1994-2013 Free Software Foundation, Inc.
# This Makefile.in is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@ -23,23 +23,51 @@
VPATH = @srcdir@
am__make_dryrun = \
{ \
am__dry=no; \
am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)'
am__make_running_with_option = \
case $${target_option-} in \
?) ;; \
*) echo "am__make_running_with_option: internal error: invalid" \
"target option '$${target_option-}' specified" >&2; \
exit 1;; \
esac; \
has_opt=no; \
sane_makeflags=$$MAKEFLAGS; \
if $(am__is_gnu_make); then \
sane_makeflags=$$MFLAGS; \
else \
case $$MAKEFLAGS in \
*\\[\ \ ]*) \
echo 'am--echo: ; @echo "AM" OK' | $(MAKE) -f - 2>/dev/null \
| grep '^AM OK$$' >/dev/null || am__dry=yes;; \
*) \
for am__flg in $$MAKEFLAGS; do \
case $$am__flg in \
*=*|--*) ;; \
*n*) am__dry=yes; break;; \
bs=\\; \
sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \
| sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \
esac; \
done;; \
fi; \
skip_next=no; \
strip_trailopt () \
{ \
flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \
}; \
for flg in $$sane_makeflags; do \
test $$skip_next = yes && { skip_next=no; continue; }; \
case $$flg in \
*=*|--*) continue;; \
-*I) strip_trailopt 'I'; skip_next=yes;; \
-*I?*) strip_trailopt 'I';; \
-*O) strip_trailopt 'O'; skip_next=yes;; \
-*O?*) strip_trailopt 'O';; \
-*l) strip_trailopt 'l'; skip_next=yes;; \
-*l?*) strip_trailopt 'l';; \
-[dEDm]) skip_next=yes;; \
-[JT]) skip_next=yes;; \
esac; \
test $$am__dry = yes; \
}
case $$flg in \
*$$target_option*) has_opt=yes; break;; \
esac; \
done; \
test $$has_opt = yes
am__make_dryrun = (target_option=n; $(am__make_running_with_option))
am__make_keepgoing = (target_option=k; $(am__make_running_with_option))
pkgdatadir = $(datadir)/@PACKAGE@
pkgincludedir = $(includedir)/@PACKAGE@
pkglibdir = $(libdir)/@PACKAGE@
@ -484,8 +512,8 @@ $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps)
$(am__aclocal_m4_deps):
jconfig.h: stamp-h1
@if test ! -f $@; then rm -f stamp-h1; else :; fi
@if test ! -f $@; then $(MAKE) $(AM_MAKEFLAGS) stamp-h1; else :; fi
@test -f $@ || rm -f stamp-h1
@test -f $@ || $(MAKE) $(AM_MAKEFLAGS) stamp-h1
stamp-h1: $(srcdir)/jconfig.cfg $(top_builddir)/config.status
@rm -f stamp-h1
@ -532,6 +560,7 @@ clean-libLTLIBRARIES:
echo rm -f $${locs}; \
rm -f $${locs}; \
}
libjpeg.la: $(libjpeg_la_OBJECTS) $(libjpeg_la_DEPENDENCIES) $(EXTRA_libjpeg_la_DEPENDENCIES)
$(AM_V_CCLD)$(libjpeg_la_LINK) -rpath $(libdir) $(libjpeg_la_OBJECTS) $(libjpeg_la_LIBADD) $(LIBS)
install-binPROGRAMS: $(bin_PROGRAMS)
@ -583,18 +612,23 @@ clean-binPROGRAMS:
list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \
echo " rm -f" $$list; \
rm -f $$list
cjpeg$(EXEEXT): $(cjpeg_OBJECTS) $(cjpeg_DEPENDENCIES) $(EXTRA_cjpeg_DEPENDENCIES)
@rm -f cjpeg$(EXEEXT)
$(AM_V_CCLD)$(LINK) $(cjpeg_OBJECTS) $(cjpeg_LDADD) $(LIBS)
djpeg$(EXEEXT): $(djpeg_OBJECTS) $(djpeg_DEPENDENCIES) $(EXTRA_djpeg_DEPENDENCIES)
@rm -f djpeg$(EXEEXT)
$(AM_V_CCLD)$(LINK) $(djpeg_OBJECTS) $(djpeg_LDADD) $(LIBS)
jpegtran$(EXEEXT): $(jpegtran_OBJECTS) $(jpegtran_DEPENDENCIES) $(EXTRA_jpegtran_DEPENDENCIES)
@rm -f jpegtran$(EXEEXT)
$(AM_V_CCLD)$(LINK) $(jpegtran_OBJECTS) $(jpegtran_LDADD) $(LIBS)
rdjpgcom$(EXEEXT): $(rdjpgcom_OBJECTS) $(rdjpgcom_DEPENDENCIES) $(EXTRA_rdjpgcom_DEPENDENCIES)
@rm -f rdjpgcom$(EXEEXT)
$(AM_V_CCLD)$(LINK) $(rdjpgcom_OBJECTS) $(rdjpgcom_LDADD) $(LIBS)
wrjpgcom$(EXEEXT): $(wrjpgcom_OBJECTS) $(wrjpgcom_DEPENDENCIES) $(EXTRA_wrjpgcom_DEPENDENCIES)
@rm -f wrjpgcom$(EXEEXT)
$(AM_V_CCLD)$(LINK) $(wrjpgcom_OBJECTS) $(wrjpgcom_LDADD) $(LIBS)
@ -676,14 +710,14 @@ distclean-compile:
@am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po
@AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
@am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $<
@am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c -o $@ $<
.c.obj:
@am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'`
@am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po
@AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
@am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'`
@am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c -o $@ `$(CYGPATH_W) '$<'`
.c.lo:
@am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $<

81
README
View File

@ -1,8 +1,8 @@
The Independent JPEG Group's JPEG software
==========================================
README for release 9 of 13-Jan-2013
===================================
README for release 9a of 19-Jan-2014
====================================
This distribution contains the ninth public release of the Independent JPEG
Group's free JPEG software. You are welcome to redistribute this software and
@ -14,7 +14,7 @@ Julian Minguillon, Luis Ortiz, George Phillips, Davide Rossi, Ge' Weijers,
and other members of the Independent JPEG Group.
IJG is not affiliated with the ISO/IEC JTC1/SC29/WG1 standards committee
(also known as JPEG, together with ITU-T SG16).
(previously known as JPEG, together with ITU-T SG16).
DOCUMENTATION ROADMAP
@ -115,7 +115,7 @@ with respect to this software, its quality, accuracy, merchantability, or
fitness for a particular purpose. This software is provided "AS IS", and you,
its user, assume the entire risk as to its quality and accuracy.
This software is copyright (C) 1991-2013, Thomas G. Lane, Guido Vollbeding.
This software is copyright (C) 1991-2014, Thomas G. Lane, Guido Vollbeding.
All Rights Reserved except as specified below.
Permission is hereby granted to use, copy, modify, and distribute this
@ -153,11 +153,11 @@ ltmain.sh). Another support script, install-sh, is copyright by X Consortium
but is also freely distributable.
The IJG distribution formerly included code to read and write GIF files.
To avoid entanglement with the Unisys LZW patent, GIF reading support has
been removed altogether, and the GIF writer has been simplified to produce
"uncompressed GIFs". This technique does not use the LZW algorithm; the
resulting GIF files are larger than usual, but are readable by all standard
GIF decoders.
To avoid entanglement with the Unisys LZW patent (now expired), GIF reading
support has been removed altogether, and the GIF writer has been simplified
to produce "uncompressed GIFs". This technique does not use the LZW
algorithm; the resulting GIF files are larger than usual, but are readable
by all standard GIF decoders.
We are required to state that
"The Graphics Interchange Format(c) is the Copyright property of
@ -252,8 +252,8 @@ ARCHIVE LOCATIONS
The "official" archive site for this software is www.ijg.org.
The most recent released version can always be found there in
directory "files". This particular version will be archived as
http://www.ijg.org/files/jpegsrc.v9.tar.gz, and in Windows-compatible
"zip" archive format as http://www.ijg.org/files/jpegsr9.zip.
http://www.ijg.org/files/jpegsrc.v9a.tar.gz, and in Windows-compatible
"zip" archive format as http://www.ijg.org/files/jpegsr9a.zip.
The JPEG FAQ (Frequently Asked Questions) article is a source of some
general information about JPEG.
@ -280,7 +280,7 @@ Thank to Thomas Wiegand and Gary Sullivan for inviting me to the
Joint Video Team (MPEG & ITU) meeting in Geneva, Switzerland.
Thank to Thomas Richter and Daniel Lee for inviting me to the
ISO/IEC JTC1/SC29/WG1 (also known as JPEG, together with ITU-T SG16)
ISO/IEC JTC1/SC29/WG1 (previously known as JPEG, together with ITU-T SG16)
meeting in Berlin, Germany.
Thank to John Korejwa and Massimo Ballerini for inviting me to
@ -306,10 +306,10 @@ design and development of this singular software package.
FILE FORMAT WARS
================
The ISO/IEC JTC1/SC29/WG1 standards committee (also known as JPEG, together
with ITU-T SG16) currently promotes different formats containing the name
"JPEG" which is misleading because these formats are incompatible with
original DCT-based JPEG and are based on faulty technologies.
The ISO/IEC JTC1/SC29/WG1 standards committee (previously known as JPEG,
together with ITU-T SG16) currently promotes different formats containing
the name "JPEG" which is misleading because these formats are incompatible
with original DCT-based JPEG and are based on faulty technologies.
IJG therefore does not and will not support such momentary mistakes
(see REFERENCES).
There exist also distributions under the name "OpenJPEG" promoting such
@ -322,9 +322,13 @@ Don't use an incompatible file format!
(In any case, our decoder will remain capable of reading existing JPEG
image files indefinitely.)
Furthermore, the ISO committee pretends to be "responsible for the popular
JPEG" in their public reports which is not true because they don't respond to
actual requirements for the maintenance of the original JPEG specification.
The ISO committee pretends to be "responsible for the popular JPEG" in their
public reports which is not true because they don't respond to actual
requirements for the maintenance of the original JPEG specification.
Furthermore, the ISO committee pretends to "ensure interoperability" with
their standards which is not true because their "standards" support only
application-specific and proprietary use cases and contain mathematically
incorrect code.
There are currently different distributions in circulation containing the
name "libjpeg" which is misleading because they don't have the features and
@ -332,19 +336,46 @@ are incompatible with formats supported by actual IJG libjpeg distributions.
One of those fakes is released by members of the ISO committee and just uses
the name of libjpeg for misdirection of people, similar to the abuse of the
name JPEG as described above, while having nothing in common with actual IJG
libjpeg distributions.
The other one claims to be a "derivative" or "fork" of the original libjpeg
and violates the license conditions as described under LEGAL ISSUES above.
We have no sympathy for the release of misleading and illegal distributions
derived from obsolete code bases.
libjpeg distributions and containing mathematically incorrect code.
The other one claims to be a "derivative" or "fork" of the original libjpeg,
but violates the license conditions as described under LEGAL ISSUES above
and violates basic C programming properties.
We have no sympathy for the release of misleading, incorrect and illegal
distributions derived from obsolete code bases.
Don't use an obsolete code base!
According to the UCC (Uniform Commercial Code) law, IJG has the lawful and
legal right to foreclose on certain standardization bodies and other
institutions or corporations that knowingly perform substantial and
systematic deceptive acts and practices, fraud, theft, and damaging of the
value of the people of this planet without their knowing, willing and
intentional consent.
The titles, ownership, and rights of these institutions and all their assets
are now duly secured and held in trust for the free people of this planet.
People of the planet, on every country, may have a financial interest in
the assets of these former principals, agents, and beneficiaries of the
foreclosed institutions and corporations.
IJG asserts what is: that each man, woman, and child has unalienable value
and rights granted and deposited in them by the Creator and not any one of
the people is subordinate to any artificial principality, corporate fiction
or the special interest of another without their appropriate knowing,
willing and intentional consent made by contract or accommodation agreement.
IJG expresses that which already was.
The people have already determined and demanded that public administration
entities, national governments, and their supporting judicial systems must
be fully transparent, accountable, and liable.
IJG has secured the value for all concerned free people of the planet.
A partial list of foreclosed institutions and corporations ("Hall of Shame")
is currently prepared and will be published later.
TO DO
=====
Version 9 is the second release of a new generation JPEG standard
to overcome the limitations of the original JPEG specification.
to overcome the limitations of the original JPEG specification,
and is the first true source reference JPEG codec.
More features are being prepared for coming releases...
Please send bug reports, offers of help, etc. to jpeg-info@jpegclub.org.

189
aclocal.m4 vendored
View File

@ -1,6 +1,6 @@
# generated automatically by aclocal 1.13.1 -*- Autoconf -*-
# generated automatically by aclocal 1.14.1 -*- Autoconf -*-
# Copyright (C) 1996-2012 Free Software Foundation, Inc.
# Copyright (C) 1996-2013 Free Software Foundation, Inc.
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@ -8619,10 +8619,10 @@ m4_ifndef([_LT_PROG_CXX], [AC_DEFUN([_LT_PROG_CXX])])
# generated from the m4 files accompanying Automake X.Y.
# (This private macro should not be called outside this file.)
AC_DEFUN([AM_AUTOMAKE_VERSION],
[am__api_version='1.13'
[am__api_version='1.14'
dnl Some users find AM_AUTOMAKE_VERSION and mistake it for a way to
dnl require some minimum version. Point them to the right macro.
m4_if([$1], [1.13.1], [],
m4_if([$1], [1.14.1], [],
[AC_FATAL([Do not call $0, use AM_INIT_AUTOMAKE([$1]).])])dnl
])
@ -8638,7 +8638,7 @@ m4_define([_AM_AUTOCONF_VERSION], [])
# Call AM_AUTOMAKE_VERSION and AM_AUTOMAKE_VERSION so they can be traced.
# This function is AC_REQUIREd by AM_INIT_AUTOMAKE.
AC_DEFUN([AM_SET_CURRENT_AUTOMAKE_VERSION],
[AM_AUTOMAKE_VERSION([1.13.1])dnl
[AM_AUTOMAKE_VERSION([1.14.1])dnl
m4_ifndef([AC_AUTOCONF_VERSION],
[m4_copy([m4_PACKAGE_VERSION], [AC_AUTOCONF_VERSION])])dnl
_AM_AUTOCONF_VERSION(m4_defn([AC_AUTOCONF_VERSION]))])
@ -8663,7 +8663,8 @@ AC_CHECK_TOOLS([AR], [ar lib "link -lib"], [false])
: ${AR=ar}
AC_CACHE_CHECK([the archiver ($AR) interface], [am_cv_ar_interface],
[am_cv_ar_interface=ar
[AC_LANG_PUSH([C])
am_cv_ar_interface=ar
AC_COMPILE_IFELSE([AC_LANG_SOURCE([[int some_variable = 0;]])],
[am_ar_try='$AR cru libconftest.a conftest.$ac_objext >&AS_MESSAGE_LOG_FD'
AC_TRY_EVAL([am_ar_try])
@ -8680,7 +8681,7 @@ AC_CACHE_CHECK([the archiver ($AR) interface], [am_cv_ar_interface],
fi
rm -f conftest.lib libconftest.a
])
])
AC_LANG_POP([C])])
case $am_cv_ar_interface in
ar)
@ -9019,7 +9020,7 @@ AC_DEFUN([_AM_OUTPUT_DEPENDENCY_COMMANDS],
DEPDIR=`sed -n 's/^DEPDIR = //p' < "$mf"`
test -z "$DEPDIR" && continue
am__include=`sed -n 's/^am__include = //p' < "$mf"`
test -z "am__include" && continue
test -z "$am__include" && continue
am__quote=`sed -n 's/^am__quote = //p' < "$mf"`
# Find all dependency output files, they are included files with
# $(DEPDIR) in their names. We invoke sed twice because it is the
@ -9064,6 +9065,12 @@ AC_DEFUN([AM_OUTPUT_DEPENDENCY_COMMANDS],
# This macro actually does too much. Some checks are only needed if
# your package does certain things. But this isn't really a big deal.
dnl Redefine AC_PROG_CC to automatically invoke _AM_PROG_CC_C_O.
m4_define([AC_PROG_CC],
m4_defn([AC_PROG_CC])
[_AM_PROG_CC_C_O
])
# AM_INIT_AUTOMAKE(PACKAGE, VERSION, [NO-DEFINE])
# AM_INIT_AUTOMAKE([OPTIONS])
# -----------------------------------------------
@ -9172,7 +9179,48 @@ dnl macro is hooked onto _AC_COMPILER_EXEEXT early, see below.
AC_CONFIG_COMMANDS_PRE(dnl
[m4_provide_if([_AM_COMPILER_EXEEXT],
[AM_CONDITIONAL([am__EXEEXT], [test -n "$EXEEXT"])])])dnl
])
# POSIX will say in a future version that running "rm -f" with no argument
# is OK; and we want to be able to make that assumption in our Makefile
# recipes. So use an aggressive probe to check that the usage we want is
# actually supported "in the wild" to an acceptable degree.
# See automake bug#10828.
# To make any issue more visible, cause the running configure to be aborted
# by default if the 'rm' program in use doesn't match our expectations; the
# user can still override this though.
if rm -f && rm -fr && rm -rf; then : OK; else
cat >&2 <<'END'
Oops!
Your 'rm' program seems unable to run without file operands specified
on the command line, even when the '-f' option is present. This is contrary
to the behaviour of most rm programs out there, and not conforming with
the upcoming POSIX standard: <http://austingroupbugs.net/view.php?id=542>
Please tell bug-automake@gnu.org about your system, including the value
of your $PATH and any error possibly output before this message. This
can help us improve future automake versions.
END
if test x"$ACCEPT_INFERIOR_RM_PROGRAM" = x"yes"; then
echo 'Configuration will proceed anyway, since you have set the' >&2
echo 'ACCEPT_INFERIOR_RM_PROGRAM variable to "yes"' >&2
echo >&2
else
cat >&2 <<'END'
Aborting the configuration process, to ensure you take notice of the issue.
You can download and install GNU coreutils to get an 'rm' implementation
that behaves properly: <http://www.gnu.org/software/coreutils/>.
If you want to complete the configuration process using your problematic
'rm' anyway, export the environment variable ACCEPT_INFERIOR_RM_PROGRAM
to "yes", and re-run configure.
END
AC_MSG_ERROR([Your 'rm' program is bad, sorry.])
fi
fi])
dnl Hook into '_AC_COMPILER_EXEEXT' early to learn its expansion. Do not
dnl add the conditional right here, as _AC_COMPILER_EXEEXT may be further
@ -9180,7 +9228,6 @@ dnl mangled by Autoconf and run in a shell conditional statement.
m4_define([_AC_COMPILER_EXEEXT],
m4_defn([_AC_COMPILER_EXEEXT])[m4_provide([_AM_COMPILER_EXEEXT])])
# When config.status generates a header, we must update the stamp-h file.
# This file resides in the same directory as the config header
# that is generated. The stamp files are numbered to have different names.
@ -9398,6 +9445,70 @@ AC_DEFUN([_AM_SET_OPTIONS],
AC_DEFUN([_AM_IF_OPTION],
[m4_ifset(_AM_MANGLE_OPTION([$1]), [$2], [$3])])
# Copyright (C) 1999-2013 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
# with or without modifications, as long as this notice is preserved.
# _AM_PROG_CC_C_O
# ---------------
# Like AC_PROG_CC_C_O, but changed for automake. We rewrite AC_PROG_CC
# to automatically call this.
AC_DEFUN([_AM_PROG_CC_C_O],
[AC_REQUIRE([AM_AUX_DIR_EXPAND])dnl
AC_REQUIRE_AUX_FILE([compile])dnl
AC_LANG_PUSH([C])dnl
AC_CACHE_CHECK(
[whether $CC understands -c and -o together],
[am_cv_prog_cc_c_o],
[AC_LANG_CONFTEST([AC_LANG_PROGRAM([])])
# Make sure it works both with $CC and with simple cc.
# Following AC_PROG_CC_C_O, we do the test twice because some
# compilers refuse to overwrite an existing .o file with -o,
# though they will create one.
am_cv_prog_cc_c_o=yes
for am_i in 1 2; do
if AM_RUN_LOG([$CC -c conftest.$ac_ext -o conftest2.$ac_objext]) \
&& test -f conftest2.$ac_objext; then
: OK
else
am_cv_prog_cc_c_o=no
break
fi
done
rm -f core conftest*
unset am_i])
if test "$am_cv_prog_cc_c_o" != yes; then
# Losing compiler, so override with the script.
# FIXME: It is wrong to rewrite CC.
# But if we don't then we get into trouble of one sort or another.
# A longer-term fix would be to have automake use am__CC in this case,
# and then we could set am__CC="\$(top_srcdir)/compile \$(CC)"
CC="$am_aux_dir/compile $CC"
fi
AC_LANG_POP([C])])
# For backward compatibility.
AC_DEFUN_ONCE([AM_PROG_CC_C_O], [AC_REQUIRE([AC_PROG_CC])])
# Copyright (C) 2001-2013 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
# with or without modifications, as long as this notice is preserved.
# AM_RUN_LOG(COMMAND)
# -------------------
# Run COMMAND, save the exit status in ac_status, and log it.
# (This has been adapted from Autoconf's _AC_RUN_LOG macro.)
AC_DEFUN([AM_RUN_LOG],
[{ echo "$as_me:$LINENO: $1" >&AS_MESSAGE_LOG_FD
($1) >&AS_MESSAGE_LOG_FD 2>&AS_MESSAGE_LOG_FD
ac_status=$?
echo "$as_me:$LINENO: \$? = $ac_status" >&AS_MESSAGE_LOG_FD
(exit $ac_status); }])
# Check to make sure that the build environment is sane. -*- Autoconf -*-
# Copyright (C) 1996-2013 Free Software Foundation, Inc.
@ -9607,26 +9718,62 @@ AC_DEFUN([AM_SUBST_NOTMAKE], [_AM_SUBST_NOTMAKE($@)])
# Substitute a variable $(am__untar) that extract such
# a tarball read from stdin.
# $(am__untar) < result.tar
#
AC_DEFUN([_AM_PROG_TAR],
[# Always define AMTAR for backward compatibility. Yes, it's still used
# in the wild :-( We should find a proper way to deprecate it ...
AC_SUBST([AMTAR], ['$${TAR-tar}'])
# We'll loop over all known methods to create a tar archive until one works.
_am_tools='gnutar m4_if([$1], [ustar], [plaintar]) pax cpio none'
m4_if([$1], [v7],
[am__tar='$${TAR-tar} chof - "$$tardir"' am__untar='$${TAR-tar} xf -'],
[m4_case([$1], [ustar],, [pax],,
[m4_case([$1],
[ustar],
[# The POSIX 1988 'ustar' format is defined with fixed-size fields.
# There is notably a 21 bits limit for the UID and the GID. In fact,
# the 'pax' utility can hang on bigger UID/GID (see automake bug#8343
# and bug#13588).
am_max_uid=2097151 # 2^21 - 1
am_max_gid=$am_max_uid
# The $UID and $GID variables are not portable, so we need to resort
# to the POSIX-mandated id(1) utility. Errors in the 'id' calls
# below are definitely unexpected, so allow the users to see them
# (that is, avoid stderr redirection).
am_uid=`id -u || echo unknown`
am_gid=`id -g || echo unknown`
AC_MSG_CHECKING([whether UID '$am_uid' is supported by ustar format])
if test $am_uid -le $am_max_uid; then
AC_MSG_RESULT([yes])
else
AC_MSG_RESULT([no])
_am_tools=none
fi
AC_MSG_CHECKING([whether GID '$am_gid' is supported by ustar format])
if test $am_gid -le $am_max_gid; then
AC_MSG_RESULT([yes])
else
AC_MSG_RESULT([no])
_am_tools=none
fi],
[pax],
[],
[m4_fatal([Unknown tar format])])
AC_MSG_CHECKING([how to create a $1 tar archive])
# Loop over all known methods to create a tar archive until one works.
_am_tools='gnutar m4_if([$1], [ustar], [plaintar]) pax cpio none'
# Go ahead even if we have the value already cached. We do so because we
# need to set the values for the 'am__tar' and 'am__untar' variables.
_am_tools=${am_cv_prog_tar_$1-$_am_tools}
# Do not fold the above two line into one, because Tru64 sh and
# Solaris sh will not grok spaces in the rhs of '-'.
for _am_tool in $_am_tools
do
for _am_tool in $_am_tools; do
case $_am_tool in
gnutar)
for _am_tar in tar gnutar gtar;
do
for _am_tar in tar gnutar gtar; do
AM_RUN_LOG([$_am_tar --version]) && break
done
am__tar="$_am_tar --format=m4_if([$1], [pax], [posix], [$1]) -chf - "'"$$tardir"'
@ -9662,7 +9809,7 @@ do
# and am__untar set.
test -n "${am_cv_prog_tar_$1}" && break
# tar/untar a dummy directory, and stop if the command works
# tar/untar a dummy directory, and stop if the command works.
rm -rf conftest.dir
mkdir conftest.dir
echo GrepMe > conftest.dir/file
@ -9670,6 +9817,7 @@ do
rm -rf conftest.dir
if test -s conftest.tar; then
AM_RUN_LOG([$am__untar <conftest.tar])
AM_RUN_LOG([cat conftest.dir/file])
grep GrepMe conftest.dir/file >/dev/null 2>&1 && break
fi
done
@ -9677,6 +9825,7 @@ rm -rf conftest.dir
AC_CACHE_VAL([am_cv_prog_tar_$1], [am_cv_prog_tar_$1=$_am_tool])
AC_MSG_RESULT([$am_cv_prog_tar_$1])])
AC_SUBST([am__tar])
AC_SUBST([am__untar])
]) # _AM_PROG_TAR

View File

@ -1,6 +1,33 @@
CHANGE LOG for Independent JPEG Group's JPEG software
Version 9a 19-Jan-2014
-----------------------
Add support for wide gamut color spaces (JFIF version 2).
Improve clarity and accuracy in color conversion modules.
Note: Requires rebuild of test images.
Extend the bit depth support to all values from 8 to 12
(BITS_IN_JSAMPLE configuration option in jmorecfg.h).
jpegtran now supports N bits sample data precision with all N from 8 to 12
in a single instance. Thank to Roland Fassauer for inspiration.
Try to resolve issues with new boolean type definition.
Thank also to v4hn for suggestion.
Enable option to use default Huffman tables for lossless compression
(for hardware solution), and in this case improve lossless RGB compression
with reversible color transform. Thank to Benny Alexandar for hint.
Extend the entropy decoding structure, so that extraneous bytes between
compressed scan data and following marker can be reported correctly.
Thank to Nigel Tao for hint.
Add jpegtran -wipe option and extension for -crop.
Thank to Andrew Senior, David Clunie, and Josef Schmid for suggestion.
Version 9 13-Jan-2013
----------------------

25
cjpeg.1
View File

@ -1,4 +1,4 @@
.TH CJPEG 1 "4 May 2012"
.TH CJPEG 1 "23 November 2013"
.SH NAME
cjpeg \- compress an image file to a JPEG file
.SH SYNOPSIS
@ -199,6 +199,26 @@ this feature. Reversible color transform support is not yet
widely implemented, so many decoders will be unable to view
a reversible color transformed JPEG file at all.
.TP
.B \-bgycc
Create big gamut YCC JPEG file.
In this type of encoding the color difference components are quantized
further by a factor of 2 compared to the normal Cb/Cr values, thus creating
space to allow larger color values with higher saturation than the normal
gamut limits to be encoded. In order to compensate for the loss of color
fidelity compared to a normal YCC encoded file, the color quantization
tables can be adjusted accordingly. For example,
.B cjpeg \-bgycc \-quality
80,90 will give similar results as
.B cjpeg \-quality
80.
.B Caution:
For correct decompression a decoder with big gamut YCC support (JFIF
version 2) is required. An old decoder may or may not display a big
gamut YCC encoded JPEG file, depending on JFIF version check and
corresponding warning/error configuration. In case of a granted
decompression the old decoder will display the image with half
saturated colors.
.TP
.B \-dct int
Use integer DCT method (default).
.TP
@ -355,7 +375,8 @@ Communications of the ACM, April 1991 (vol. 34, no. 4), pp. 30-44.
.SH AUTHOR
Independent JPEG Group
.SH BUGS
GIF input files are no longer supported, to avoid the Unisys LZW patent.
GIF input files are no longer supported, to avoid the Unisys LZW patent
(now expired).
(Conversion of GIF files to JPEG is usually a bad idea anyway.)
.PP
Not all variants of BMP and Targa file formats are supported.

12
cjpeg.c
View File

@ -174,6 +174,7 @@ usage (void)
#endif
#if JPEG_LIB_VERSION_MAJOR >= 9
fprintf(stderr, " -rgb1 Create RGB JPEG file with reversible color transform\n");
fprintf(stderr, " -bgycc Create big gamut YCC JPEG file\n");
#endif
#ifdef DCT_ISLOW_SUPPORTED
fprintf(stderr, " -dct int Use integer DCT method%s\n",
@ -323,6 +324,17 @@ parse_switches (j_compress_ptr cinfo, int argc, char **argv,
#endif
jpeg_set_colorspace(cinfo, JCS_RGB);
} else if (keymatch(arg, "bgycc", 5)) {
/* Force a big gamut YCC JPEG file to be generated. */
#if JPEG_LIB_VERSION_MAJOR >= 9 && \
(JPEG_LIB_VERSION_MAJOR > 9 || JPEG_LIB_VERSION_MINOR >= 1)
jpeg_set_colorspace(cinfo, JCS_BG_YCC);
#else
fprintf(stderr, "%s: sorry, BG_YCC colorspace not supported\n",
progname);
exit(EXIT_FAILURE);
#endif
} else if (keymatch(arg, "maxmemory", 3)) {
/* Maximum memory in Kb (or Mb with 'm'). */
long lval;

347
compile Executable file
View File

@ -0,0 +1,347 @@
#! /bin/sh
# Wrapper for compilers which do not understand '-c -o'.
scriptversion=2012-10-14.11; # UTC
# Copyright (C) 1999-2013 Free Software Foundation, Inc.
# Written by Tom Tromey <tromey@cygnus.com>.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# As a special exception to the GNU General Public License, if you
# distribute this file as part of a program that contains a
# configuration script generated by Autoconf, you may include it under
# the same distribution terms that you use for the rest of that program.
# This file is maintained in Automake, please report
# bugs to <bug-automake@gnu.org> or send patches to
# <automake-patches@gnu.org>.
nl='
'
# We need space, tab and new line, in precisely that order. Quoting is
# there to prevent tools from complaining about whitespace usage.
IFS=" "" $nl"
file_conv=
# func_file_conv build_file lazy
# Convert a $build file to $host form and store it in $file
# Currently only supports Windows hosts. If the determined conversion
# type is listed in (the comma separated) LAZY, no conversion will
# take place.
func_file_conv ()
{
file=$1
case $file in
/ | /[!/]*) # absolute file, and not a UNC file
if test -z "$file_conv"; then
# lazily determine how to convert abs files
case `uname -s` in
MINGW*)
file_conv=mingw
;;
CYGWIN*)
file_conv=cygwin
;;
*)
file_conv=wine
;;
esac
fi
case $file_conv/,$2, in
*,$file_conv,*)
;;
mingw/*)
file=`cmd //C echo "$file " | sed -e 's/"\(.*\) " *$/\1/'`
;;
cygwin/*)
file=`cygpath -m "$file" || echo "$file"`
;;
wine/*)
file=`winepath -w "$file" || echo "$file"`
;;
esac
;;
esac
}
# func_cl_dashL linkdir
# Make cl look for libraries in LINKDIR
func_cl_dashL ()
{
func_file_conv "$1"
if test -z "$lib_path"; then
lib_path=$file
else
lib_path="$lib_path;$file"
fi
linker_opts="$linker_opts -LIBPATH:$file"
}
# func_cl_dashl library
# Do a library search-path lookup for cl
func_cl_dashl ()
{
lib=$1
found=no
save_IFS=$IFS
IFS=';'
for dir in $lib_path $LIB
do
IFS=$save_IFS
if $shared && test -f "$dir/$lib.dll.lib"; then
found=yes
lib=$dir/$lib.dll.lib
break
fi
if test -f "$dir/$lib.lib"; then
found=yes
lib=$dir/$lib.lib
break
fi
if test -f "$dir/lib$lib.a"; then
found=yes
lib=$dir/lib$lib.a
break
fi
done
IFS=$save_IFS
if test "$found" != yes; then
lib=$lib.lib
fi
}
# func_cl_wrapper cl arg...
# Adjust compile command to suit cl
func_cl_wrapper ()
{
# Assume a capable shell
lib_path=
shared=:
linker_opts=
for arg
do
if test -n "$eat"; then
eat=
else
case $1 in
-o)
# configure might choose to run compile as 'compile cc -o foo foo.c'.
eat=1
case $2 in
*.o | *.[oO][bB][jJ])
func_file_conv "$2"
set x "$@" -Fo"$file"
shift
;;
*)
func_file_conv "$2"
set x "$@" -Fe"$file"
shift
;;
esac
;;
-I)
eat=1
func_file_conv "$2" mingw
set x "$@" -I"$file"
shift
;;
-I*)
func_file_conv "${1#-I}" mingw
set x "$@" -I"$file"
shift
;;
-l)
eat=1
func_cl_dashl "$2"
set x "$@" "$lib"
shift
;;
-l*)
func_cl_dashl "${1#-l}"
set x "$@" "$lib"
shift
;;
-L)
eat=1
func_cl_dashL "$2"
;;
-L*)
func_cl_dashL "${1#-L}"
;;
-static)
shared=false
;;
-Wl,*)
arg=${1#-Wl,}
save_ifs="$IFS"; IFS=','
for flag in $arg; do
IFS="$save_ifs"
linker_opts="$linker_opts $flag"
done
IFS="$save_ifs"
;;
-Xlinker)
eat=1
linker_opts="$linker_opts $2"
;;
-*)
set x "$@" "$1"
shift
;;
*.cc | *.CC | *.cxx | *.CXX | *.[cC]++)
func_file_conv "$1"
set x "$@" -Tp"$file"
shift
;;
*.c | *.cpp | *.CPP | *.lib | *.LIB | *.Lib | *.OBJ | *.obj | *.[oO])
func_file_conv "$1" mingw
set x "$@" "$file"
shift
;;
*)
set x "$@" "$1"
shift
;;
esac
fi
shift
done
if test -n "$linker_opts"; then
linker_opts="-link$linker_opts"
fi
exec "$@" $linker_opts
exit 1
}
eat=
case $1 in
'')
echo "$0: No command. Try '$0 --help' for more information." 1>&2
exit 1;
;;
-h | --h*)
cat <<\EOF
Usage: compile [--help] [--version] PROGRAM [ARGS]
Wrapper for compilers which do not understand '-c -o'.
Remove '-o dest.o' from ARGS, run PROGRAM with the remaining
arguments, and rename the output as expected.
If you are trying to build a whole package this is not the
right script to run: please start by reading the file 'INSTALL'.
Report bugs to <bug-automake@gnu.org>.
EOF
exit $?
;;
-v | --v*)
echo "compile $scriptversion"
exit $?
;;
cl | *[/\\]cl | cl.exe | *[/\\]cl.exe )
func_cl_wrapper "$@" # Doesn't return...
;;
esac
ofile=
cfile=
for arg
do
if test -n "$eat"; then
eat=
else
case $1 in
-o)
# configure might choose to run compile as 'compile cc -o foo foo.c'.
# So we strip '-o arg' only if arg is an object.
eat=1
case $2 in
*.o | *.obj)
ofile=$2
;;
*)
set x "$@" -o "$2"
shift
;;
esac
;;
*.c)
cfile=$1
set x "$@" "$1"
shift
;;
*)
set x "$@" "$1"
shift
;;
esac
fi
shift
done
if test -z "$ofile" || test -z "$cfile"; then
# If no '-o' option was seen then we might have been invoked from a
# pattern rule where we don't need one. That is ok -- this is a
# normal compilation that the losing compiler can handle. If no
# '.c' file was seen then we are probably linking. That is also
# ok.
exec "$@"
fi
# Name of file we expect compiler to create.
cofile=`echo "$cfile" | sed 's|^.*[\\/]||; s|^[a-zA-Z]:||; s/\.c$/.o/'`
# Create the lock directory.
# Note: use '[/\\:.-]' here to ensure that we don't use the same name
# that we are using for the .o file. Also, base the name on the expected
# object file name, since that is what matters with a parallel build.
lockdir=`echo "$cofile" | sed -e 's|[/\\:.-]|_|g'`.d
while true; do
if mkdir "$lockdir" >/dev/null 2>&1; then
break
fi
sleep 1
done
# FIXME: race condition here if user kills between mkdir and trap.
trap "rmdir '$lockdir'; exit 1" 1 2 15
# Run the compile.
"$@"
ret=$?
if test -f "$cofile"; then
test "$cofile" = "$ofile" || mv "$cofile" "$ofile"
elif test -f "${cofile}bj"; then
test "${cofile}bj" = "$ofile" || mv "${cofile}bj" "$ofile"
fi
rmdir "$lockdir"
exit $ret
# Local Variables:
# mode: shell-script
# sh-indentation: 2
# eval: (add-hook 'write-file-hooks 'time-stamp)
# time-stamp-start: "scriptversion="
# time-stamp-format: "%:y-%02m-%02d.%02H"
# time-stamp-time-zone: "UTC"
# time-stamp-end: "; # UTC"
# End:

145
config.guess vendored
View File

@ -1,10 +1,8 @@
#! /bin/sh
# Attempt to guess a canonical system name.
# Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
# 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
# 2011, 2012, 2013 Free Software Foundation, Inc.
# Copyright 1992-2013 Free Software Foundation, Inc.
timestamp='2012-12-29'
timestamp='2013-11-29'
# This file is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
@ -52,9 +50,7 @@ version="\
GNU config.guess ($timestamp)
Originally written by Per Bothner.
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
2012, 2013 Free Software Foundation, Inc.
Copyright 1992-2013 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE."
@ -136,6 +132,27 @@ UNAME_RELEASE=`(uname -r) 2>/dev/null` || UNAME_RELEASE=unknown
UNAME_SYSTEM=`(uname -s) 2>/dev/null` || UNAME_SYSTEM=unknown
UNAME_VERSION=`(uname -v) 2>/dev/null` || UNAME_VERSION=unknown
case "${UNAME_SYSTEM}" in
Linux|GNU|GNU/*)
# If the system lacks a compiler, then just pick glibc.
# We could probably try harder.
LIBC=gnu
eval $set_cc_for_build
cat <<-EOF > $dummy.c
#include <features.h>
#if defined(__UCLIBC__)
LIBC=uclibc
#elif defined(__dietlibc__)
LIBC=dietlibc
#else
LIBC=gnu
#endif
EOF
eval `$CC_FOR_BUILD -E $dummy.c 2>/dev/null | grep '^LIBC'`
;;
esac
# Note: order is significant - the case branches are not exclusive.
case "${UNAME_MACHINE}:${UNAME_SYSTEM}:${UNAME_RELEASE}:${UNAME_VERSION}" in
@ -857,21 +874,21 @@ EOF
exit ;;
*:GNU:*:*)
# the GNU system
echo `echo ${UNAME_MACHINE}|sed -e 's,[-/].*$,,'`-unknown-gnu`echo ${UNAME_RELEASE}|sed -e 's,/.*$,,'`
echo `echo ${UNAME_MACHINE}|sed -e 's,[-/].*$,,'`-unknown-${LIBC}`echo ${UNAME_RELEASE}|sed -e 's,/.*$,,'`
exit ;;
*:GNU/*:*:*)
# other systems with GNU libc and userland
echo ${UNAME_MACHINE}-unknown-`echo ${UNAME_SYSTEM} | sed 's,^[^/]*/,,' | tr '[A-Z]' '[a-z]'``echo ${UNAME_RELEASE}|sed -e 's/[-(].*//'`-gnu
echo ${UNAME_MACHINE}-unknown-`echo ${UNAME_SYSTEM} | sed 's,^[^/]*/,,' | tr '[A-Z]' '[a-z]'``echo ${UNAME_RELEASE}|sed -e 's/[-(].*//'`-${LIBC}
exit ;;
i*86:Minix:*:*)
echo ${UNAME_MACHINE}-pc-minix
exit ;;
aarch64:Linux:*:*)
echo ${UNAME_MACHINE}-unknown-linux-gnu
echo ${UNAME_MACHINE}-unknown-linux-${LIBC}
exit ;;
aarch64_be:Linux:*:*)
UNAME_MACHINE=aarch64_be
echo ${UNAME_MACHINE}-unknown-linux-gnu
echo ${UNAME_MACHINE}-unknown-linux-${LIBC}
exit ;;
alpha:Linux:*:*)
case `sed -n '/^cpu model/s/^.*: \(.*\)/\1/p' < /proc/cpuinfo` in
@ -884,59 +901,54 @@ EOF
EV68*) UNAME_MACHINE=alphaev68 ;;
esac
objdump --private-headers /bin/sh | grep -q ld.so.1
if test "$?" = 0 ; then LIBC="libc1" ; else LIBC="" ; fi
echo ${UNAME_MACHINE}-unknown-linux-gnu${LIBC}
if test "$?" = 0 ; then LIBC="gnulibc1" ; fi
echo ${UNAME_MACHINE}-unknown-linux-${LIBC}
exit ;;
arc:Linux:*:* | arceb:Linux:*:*)
echo ${UNAME_MACHINE}-unknown-linux-${LIBC}
exit ;;
arm*:Linux:*:*)
eval $set_cc_for_build
if echo __ARM_EABI__ | $CC_FOR_BUILD -E - 2>/dev/null \
| grep -q __ARM_EABI__
then
echo ${UNAME_MACHINE}-unknown-linux-gnu
echo ${UNAME_MACHINE}-unknown-linux-${LIBC}
else
if echo __ARM_PCS_VFP | $CC_FOR_BUILD -E - 2>/dev/null \
| grep -q __ARM_PCS_VFP
then
echo ${UNAME_MACHINE}-unknown-linux-gnueabi
echo ${UNAME_MACHINE}-unknown-linux-${LIBC}eabi
else
echo ${UNAME_MACHINE}-unknown-linux-gnueabihf
echo ${UNAME_MACHINE}-unknown-linux-${LIBC}eabihf
fi
fi
exit ;;
avr32*:Linux:*:*)
echo ${UNAME_MACHINE}-unknown-linux-gnu
echo ${UNAME_MACHINE}-unknown-linux-${LIBC}
exit ;;
cris:Linux:*:*)
echo ${UNAME_MACHINE}-axis-linux-gnu
echo ${UNAME_MACHINE}-axis-linux-${LIBC}
exit ;;
crisv32:Linux:*:*)
echo ${UNAME_MACHINE}-axis-linux-gnu
echo ${UNAME_MACHINE}-axis-linux-${LIBC}
exit ;;
frv:Linux:*:*)
echo ${UNAME_MACHINE}-unknown-linux-gnu
echo ${UNAME_MACHINE}-unknown-linux-${LIBC}
exit ;;
hexagon:Linux:*:*)
echo ${UNAME_MACHINE}-unknown-linux-gnu
echo ${UNAME_MACHINE}-unknown-linux-${LIBC}
exit ;;
i*86:Linux:*:*)
LIBC=gnu
eval $set_cc_for_build
sed 's/^ //' << EOF >$dummy.c
#ifdef __dietlibc__
LIBC=dietlibc
#endif
EOF
eval `$CC_FOR_BUILD -E $dummy.c 2>/dev/null | grep '^LIBC'`
echo "${UNAME_MACHINE}-pc-linux-${LIBC}"
echo ${UNAME_MACHINE}-pc-linux-${LIBC}
exit ;;
ia64:Linux:*:*)
echo ${UNAME_MACHINE}-unknown-linux-gnu
echo ${UNAME_MACHINE}-unknown-linux-${LIBC}
exit ;;
m32r*:Linux:*:*)
echo ${UNAME_MACHINE}-unknown-linux-gnu
echo ${UNAME_MACHINE}-unknown-linux-${LIBC}
exit ;;
m68*:Linux:*:*)
echo ${UNAME_MACHINE}-unknown-linux-gnu
echo ${UNAME_MACHINE}-unknown-linux-${LIBC}
exit ;;
mips:Linux:*:* | mips64:Linux:*:*)
eval $set_cc_for_build
@ -955,54 +967,63 @@ EOF
#endif
EOF
eval `$CC_FOR_BUILD -E $dummy.c 2>/dev/null | grep '^CPU'`
test x"${CPU}" != x && { echo "${CPU}-unknown-linux-gnu"; exit; }
test x"${CPU}" != x && { echo "${CPU}-unknown-linux-${LIBC}"; exit; }
;;
or1k:Linux:*:*)
echo ${UNAME_MACHINE}-unknown-linux-${LIBC}
exit ;;
or32:Linux:*:*)
echo ${UNAME_MACHINE}-unknown-linux-gnu
echo ${UNAME_MACHINE}-unknown-linux-${LIBC}
exit ;;
padre:Linux:*:*)
echo sparc-unknown-linux-gnu
echo sparc-unknown-linux-${LIBC}
exit ;;
parisc64:Linux:*:* | hppa64:Linux:*:*)
echo hppa64-unknown-linux-gnu
echo hppa64-unknown-linux-${LIBC}
exit ;;
parisc:Linux:*:* | hppa:Linux:*:*)
# Look for CPU level
case `grep '^cpu[^a-z]*:' /proc/cpuinfo 2>/dev/null | cut -d' ' -f2` in
PA7*) echo hppa1.1-unknown-linux-gnu ;;
PA8*) echo hppa2.0-unknown-linux-gnu ;;
*) echo hppa-unknown-linux-gnu ;;
PA7*) echo hppa1.1-unknown-linux-${LIBC} ;;
PA8*) echo hppa2.0-unknown-linux-${LIBC} ;;
*) echo hppa-unknown-linux-${LIBC} ;;
esac
exit ;;
ppc64:Linux:*:*)
echo powerpc64-unknown-linux-gnu
echo powerpc64-unknown-linux-${LIBC}
exit ;;
ppc:Linux:*:*)
echo powerpc-unknown-linux-gnu
echo powerpc-unknown-linux-${LIBC}
exit ;;
ppc64le:Linux:*:*)
echo powerpc64le-unknown-linux-${LIBC}
exit ;;
ppcle:Linux:*:*)
echo powerpcle-unknown-linux-${LIBC}
exit ;;
s390:Linux:*:* | s390x:Linux:*:*)
echo ${UNAME_MACHINE}-ibm-linux
echo ${UNAME_MACHINE}-ibm-linux-${LIBC}
exit ;;
sh64*:Linux:*:*)
echo ${UNAME_MACHINE}-unknown-linux-gnu
echo ${UNAME_MACHINE}-unknown-linux-${LIBC}
exit ;;
sh*:Linux:*:*)
echo ${UNAME_MACHINE}-unknown-linux-gnu
echo ${UNAME_MACHINE}-unknown-linux-${LIBC}
exit ;;
sparc:Linux:*:* | sparc64:Linux:*:*)
echo ${UNAME_MACHINE}-unknown-linux-gnu
echo ${UNAME_MACHINE}-unknown-linux-${LIBC}
exit ;;
tile*:Linux:*:*)
echo ${UNAME_MACHINE}-unknown-linux-gnu
echo ${UNAME_MACHINE}-unknown-linux-${LIBC}
exit ;;
vax:Linux:*:*)
echo ${UNAME_MACHINE}-dec-linux-gnu
echo ${UNAME_MACHINE}-dec-linux-${LIBC}
exit ;;
x86_64:Linux:*:*)
echo ${UNAME_MACHINE}-unknown-linux-gnu
echo ${UNAME_MACHINE}-unknown-linux-${LIBC}
exit ;;
xtensa*:Linux:*:*)
echo ${UNAME_MACHINE}-unknown-linux-gnu
echo ${UNAME_MACHINE}-unknown-linux-${LIBC}
exit ;;
i*86:DYNIX/ptx:4*:*)
# ptx 4.0 does uname -s correctly, with DYNIX/ptx in there.
@ -1235,19 +1256,31 @@ EOF
exit ;;
*:Darwin:*:*)
UNAME_PROCESSOR=`uname -p` || UNAME_PROCESSOR=unknown
case $UNAME_PROCESSOR in
i386)
eval $set_cc_for_build
if test "$UNAME_PROCESSOR" = unknown ; then
UNAME_PROCESSOR=powerpc
fi
if test `echo "$UNAME_RELEASE" | sed -e 's/\..*//'` -le 10 ; then
if [ "$CC_FOR_BUILD" != 'no_compiler_found' ]; then
if (echo '#ifdef __LP64__'; echo IS_64BIT_ARCH; echo '#endif') | \
(CCOPTS= $CC_FOR_BUILD -E - 2>/dev/null) | \
grep IS_64BIT_ARCH >/dev/null
then
UNAME_PROCESSOR="x86_64"
fi
fi ;;
unknown) UNAME_PROCESSOR=powerpc ;;
case $UNAME_PROCESSOR in
i386) UNAME_PROCESSOR=x86_64 ;;
powerpc) UNAME_PROCESSOR=powerpc64 ;;
esac
fi
fi
elif test "$UNAME_PROCESSOR" = i386 ; then
# Avoid executing cc on OS X 10.9, as it ships with a stub
# that puts up a graphical alert prompting to install
# developer tools. Any system running Mac OS X 10.7 or
# later (Darwin 11 and later) is required to have a 64-bit
# processor. This is not true of the ARM version of Darwin
# that Apple uses in portable devices.
UNAME_PROCESSOR=x86_64
fi
echo ${UNAME_PROCESSOR}-apple-darwin${UNAME_RELEASE}
exit ;;
*:procnto*:*:* | *:QNX:[0123456789]*:*)

45
config.sub vendored
View File

@ -1,10 +1,8 @@
#! /bin/sh
# Configuration validation subroutine script.
# Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
# 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
# 2011, 2012, 2013 Free Software Foundation, Inc.
# Copyright 1992-2013 Free Software Foundation, Inc.
timestamp='2012-12-29'
timestamp='2013-10-01'
# This file is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
@ -70,9 +68,7 @@ Report bugs and patches to <config-patches@gnu.org>."
version="\
GNU config.sub ($timestamp)
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
2012, 2013 Free Software Foundation, Inc.
Copyright 1992-2013 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE."
@ -256,12 +252,12 @@ case $basic_machine in
| alpha | alphaev[4-8] | alphaev56 | alphaev6[78] | alphapca5[67] \
| alpha64 | alpha64ev[4-8] | alpha64ev56 | alpha64ev6[78] | alpha64pca5[67] \
| am33_2.0 \
| arc \
| arc | arceb \
| arm | arm[bl]e | arme[lb] | armv[2-8] | armv[3-8][lb] | armv7[arm] \
| avr | avr32 \
| be32 | be64 \
| bfin \
| c4x | clipper \
| c4x | c8051 | clipper \
| d10v | d30v | dlx | dsp16xx \
| epiphany \
| fido | fr30 | frv \
@ -269,6 +265,7 @@ case $basic_machine in
| hexagon \
| i370 | i860 | i960 | ia64 \
| ip2k | iq2000 \
| k1om \
| le32 | le64 \
| lm32 \
| m32c | m32r | m32rle | m68000 | m68k | m88k \
@ -290,16 +287,17 @@ case $basic_machine in
| mipsisa64r2 | mipsisa64r2el \
| mipsisa64sb1 | mipsisa64sb1el \
| mipsisa64sr71k | mipsisa64sr71kel \
| mipsr5900 | mipsr5900el \
| mipstx39 | mipstx39el \
| mn10200 | mn10300 \
| moxie \
| mt \
| msp430 \
| nds32 | nds32le | nds32be \
| nios | nios2 \
| nios | nios2 | nios2eb | nios2el \
| ns16k | ns32k \
| open8 \
| or32 \
| or1k | or32 \
| pdp10 | pdp11 | pj | pjl \
| powerpc | powerpc64 | powerpc64le | powerpcle \
| pyramid \
@ -327,7 +325,7 @@ case $basic_machine in
c6x)
basic_machine=tic6x-unknown
;;
m6811 | m68hc11 | m6812 | m68hc12 | m68hcs12x | picochip)
m6811 | m68hc11 | m6812 | m68hc12 | m68hcs12x | nvptx | picochip)
basic_machine=$basic_machine-unknown
os=-none
;;
@ -369,13 +367,13 @@ case $basic_machine in
| aarch64-* | aarch64_be-* \
| alpha-* | alphaev[4-8]-* | alphaev56-* | alphaev6[78]-* \
| alpha64-* | alpha64ev[4-8]-* | alpha64ev56-* | alpha64ev6[78]-* \
| alphapca5[67]-* | alpha64pca5[67]-* | arc-* \
| alphapca5[67]-* | alpha64pca5[67]-* | arc-* | arceb-* \
| arm-* | armbe-* | armle-* | armeb-* | armv*-* \
| avr-* | avr32-* \
| be32-* | be64-* \
| bfin-* | bs2000-* \
| c[123]* | c30-* | [cjt]90-* | c4x-* \
| clipper-* | craynv-* | cydra-* \
| c8051-* | clipper-* | craynv-* | cydra-* \
| d10v-* | d30v-* | dlx-* \
| elxsi-* \
| f30[01]-* | f700-* | fido-* | fr30-* | frv-* | fx80-* \
@ -384,6 +382,7 @@ case $basic_machine in
| hexagon-* \
| i*86-* | i860-* | i960-* | ia64-* \
| ip2k-* | iq2000-* \
| k1om-* \
| le32-* | le64-* \
| lm32-* \
| m32c-* | m32r-* | m32rle-* \
@ -407,12 +406,13 @@ case $basic_machine in
| mipsisa64r2-* | mipsisa64r2el-* \
| mipsisa64sb1-* | mipsisa64sb1el-* \
| mipsisa64sr71k-* | mipsisa64sr71kel-* \
| mipsr5900-* | mipsr5900el-* \
| mipstx39-* | mipstx39el-* \
| mmix-* \
| mt-* \
| msp430-* \
| nds32-* | nds32le-* | nds32be-* \
| nios-* | nios2-* \
| nios-* | nios2-* | nios2eb-* | nios2el-* \
| none-* | np1-* | ns16k-* | ns32k-* \
| open8-* \
| orion-* \
@ -796,7 +796,7 @@ case $basic_machine in
os=-mingw64
;;
mingw32)
basic_machine=i386-pc
basic_machine=i686-pc
os=-mingw32
;;
mingw32ce)
@ -832,7 +832,7 @@ case $basic_machine in
basic_machine=`echo $basic_machine | sed -e 's/ms1-/mt-/'`
;;
msys)
basic_machine=i386-pc
basic_machine=i686-pc
os=-msys
;;
mvs)
@ -1354,7 +1354,7 @@ case $os in
-gnu* | -bsd* | -mach* | -minix* | -genix* | -ultrix* | -irix* \
| -*vms* | -sco* | -esix* | -isc* | -aix* | -cnk* | -sunos | -sunos[34]*\
| -hpux* | -unos* | -osf* | -luna* | -dgux* | -auroraux* | -solaris* \
| -sym* | -kopensolaris* \
| -sym* | -kopensolaris* | -plan9* \
| -amigaos* | -amigados* | -msdos* | -newsos* | -unicos* | -aof* \
| -aos* | -aros* \
| -nindy* | -vxsim* | -vxworks* | -ebmon* | -hms* | -mvs* \
@ -1500,9 +1500,6 @@ case $os in
-aros*)
os=-aros
;;
-kaos*)
os=-kaos
;;
-zvmoe)
os=-zvmoe
;;
@ -1551,6 +1548,9 @@ case $basic_machine in
c4x-* | tic4x-*)
os=-coff
;;
c8051-*)
os=-elf
;;
hexagon-*)
os=-elf
;;
@ -1594,6 +1594,9 @@ case $basic_machine in
mips*-*)
os=-elf
;;
or1k-*)
os=-elf
;;
or32-*)
os=-coff
;;

140
configure vendored
View File

@ -1,6 +1,6 @@
#! /bin/sh
# Guess values for system-dependent variables and create Makefiles.
# Generated by GNU Autoconf 2.69 for libjpeg 9.0.0.
# Generated by GNU Autoconf 2.69 for libjpeg 9.1.0.
#
#
# Copyright (C) 1992-1996, 1998-2012 Free Software Foundation, Inc.
@ -587,8 +587,8 @@ MAKEFLAGS=
# Identity of this package.
PACKAGE_NAME='libjpeg'
PACKAGE_TARNAME='libjpeg'
PACKAGE_VERSION='9.0.0'
PACKAGE_STRING='libjpeg 9.0.0'
PACKAGE_VERSION='9.1.0'
PACKAGE_STRING='libjpeg 9.1.0'
PACKAGE_BUGREPORT=''
PACKAGE_URL=''
@ -1321,7 +1321,7 @@ if test "$ac_init_help" = "long"; then
# Omit some internal or obsolete options to make the list less imposing.
# This message is too long to be a string in the A/UX 3.1 sh.
cat <<_ACEOF
\`configure' configures libjpeg 9.0.0 to adapt to many kinds of systems.
\`configure' configures libjpeg 9.1.0 to adapt to many kinds of systems.
Usage: $0 [OPTION]... [VAR=VALUE]...
@ -1392,7 +1392,7 @@ fi
if test -n "$ac_init_help"; then
case $ac_init_help in
short | recursive ) echo "Configuration of libjpeg 9.0.0:";;
short | recursive ) echo "Configuration of libjpeg 9.1.0:";;
esac
cat <<\_ACEOF
@ -1504,7 +1504,7 @@ fi
test -n "$ac_init_help" && exit $ac_status
if $ac_init_version; then
cat <<\_ACEOF
libjpeg configure 9.0.0
libjpeg configure 9.1.0
generated by GNU Autoconf 2.69
Copyright (C) 2012 Free Software Foundation, Inc.
@ -1869,7 +1869,7 @@ cat >config.log <<_ACEOF
This file contains any messages produced by compilers while
running configure, to aid debugging if configure makes a mistake.
It was created by libjpeg $as_me 9.0.0, which was
It was created by libjpeg $as_me 9.1.0, which was
generated by GNU Autoconf 2.69. Invocation command line was
$ $0 $@
@ -2370,7 +2370,7 @@ test -n "$target_alias" &&
# Initialize Automake
# Don't require all the GNU mandated files
am__api_version='1.13'
am__api_version='1.14'
# Find a good install program. We prefer a C program (faster),
# so one script is as good as another. But avoid the broken or
@ -2856,7 +2856,7 @@ fi
# Define the identity of the package.
PACKAGE='libjpeg'
VERSION='9.0.0'
VERSION='9.1.0'
cat >>confdefs.h <<_ACEOF
@ -2896,6 +2896,10 @@ mkdir_p='$(MKDIR_P)'
# in the wild :-( We should find a proper way to deprecate it ...
AMTAR='$${TAR-tar}'
# We'll loop over all known methods to create a tar archive until one works.
_am_tools='gnutar pax cpio none'
am__tar='$${TAR-tar} chof - "$$tardir"' am__untar='$${TAR-tar} xf -'
@ -2903,6 +2907,48 @@ am__tar='$${TAR-tar} chof - "$$tardir"' am__untar='$${TAR-tar} xf -'
# POSIX will say in a future version that running "rm -f" with no argument
# is OK; and we want to be able to make that assumption in our Makefile
# recipes. So use an aggressive probe to check that the usage we want is
# actually supported "in the wild" to an acceptable degree.
# See automake bug#10828.
# To make any issue more visible, cause the running configure to be aborted
# by default if the 'rm' program in use doesn't match our expectations; the
# user can still override this though.
if rm -f && rm -fr && rm -rf; then : OK; else
cat >&2 <<'END'
Oops!
Your 'rm' program seems unable to run without file operands specified
on the command line, even when the '-f' option is present. This is contrary
to the behaviour of most rm programs out there, and not conforming with
the upcoming POSIX standard: <http://austingroupbugs.net/view.php?id=542>
Please tell bug-automake@gnu.org about your system, including the value
of your $PATH and any error possibly output before this message. This
can help us improve future automake versions.
END
if test x"$ACCEPT_INFERIOR_RM_PROGRAM" = x"yes"; then
echo 'Configuration will proceed anyway, since you have set the' >&2
echo 'ACCEPT_INFERIOR_RM_PROGRAM variable to "yes"' >&2
echo >&2
else
cat >&2 <<'END'
Aborting the configuration process, to ensure you take notice of the issue.
You can download and install GNU coreutils to get an 'rm' implementation
that behaves properly: <http://www.gnu.org/software/coreutils/>.
If you want to complete the configuration process using your problematic
'rm' anyway, export the environment variable ACCEPT_INFERIOR_RM_PROGRAM
to "yes", and re-run configure.
END
as_fn_error $? "Your 'rm' program is bad, sorry." "$LINENO" 5
fi
fi
# Make --enable-silent-rules the default.
# To get verbose build output you may configure
# with --disable-silent-rules or use "make V=1".
@ -3762,6 +3808,65 @@ ac_cpp='$CPP $CPPFLAGS'
ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5'
ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5'
ac_compiler_gnu=$ac_cv_c_compiler_gnu
ac_ext=c
ac_cpp='$CPP $CPPFLAGS'
ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5'
ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5'
ac_compiler_gnu=$ac_cv_c_compiler_gnu
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking whether $CC understands -c and -o together" >&5
$as_echo_n "checking whether $CC understands -c and -o together... " >&6; }
if ${am_cv_prog_cc_c_o+:} false; then :
$as_echo_n "(cached) " >&6
else
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
int
main ()
{
;
return 0;
}
_ACEOF
# Make sure it works both with $CC and with simple cc.
# Following AC_PROG_CC_C_O, we do the test twice because some
# compilers refuse to overwrite an existing .o file with -o,
# though they will create one.
am_cv_prog_cc_c_o=yes
for am_i in 1 2; do
if { echo "$as_me:$LINENO: $CC -c conftest.$ac_ext -o conftest2.$ac_objext" >&5
($CC -c conftest.$ac_ext -o conftest2.$ac_objext) >&5 2>&5
ac_status=$?
echo "$as_me:$LINENO: \$? = $ac_status" >&5
(exit $ac_status); } \
&& test -f conftest2.$ac_objext; then
: OK
else
am_cv_prog_cc_c_o=no
break
fi
done
rm -f core conftest*
unset am_i
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $am_cv_prog_cc_c_o" >&5
$as_echo "$am_cv_prog_cc_c_o" >&6; }
if test "$am_cv_prog_cc_c_o" != yes; then
# Losing compiler, so override with the script.
# FIXME: It is wrong to rewrite CC.
# But if we don't then we get into trouble of one sort or another.
# A longer-term fix would be to have automake use am__CC in this case,
# and then we could set am__CC="\$(top_srcdir)/compile \$(CC)"
CC="$am_aux_dir/compile $CC"
fi
ac_ext=c
ac_cpp='$CPP $CPPFLAGS'
ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5'
ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5'
ac_compiler_gnu=$ac_cv_c_compiler_gnu
DEPDIR="${am__leading_dot}deps"
ac_config_commands="$ac_config_commands depfiles"
@ -4534,6 +4639,12 @@ $as_echo_n "checking the archiver ($AR) interface... " >&6; }
if ${am_cv_ar_interface+:} false; then :
$as_echo_n "(cached) " >&6
else
ac_ext=c
ac_cpp='$CPP $CPPFLAGS'
ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5'
ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5'
ac_compiler_gnu=$ac_cv_c_compiler_gnu
am_cv_ar_interface=ar
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
@ -4565,6 +4676,11 @@ if ac_fn_c_try_compile "$LINENO"; then :
fi
rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext
ac_ext=c
ac_cpp='$CPP $CPPFLAGS'
ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5'
ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5'
ac_compiler_gnu=$ac_cv_c_compiler_gnu
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $am_cv_ar_interface" >&5
@ -13507,7 +13623,7 @@ cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1
# report actual input values of CONFIG_FILES etc. instead of their
# values after options handling.
ac_log="
This file was extended by libjpeg $as_me 9.0.0, which was
This file was extended by libjpeg $as_me 9.1.0, which was
generated by GNU Autoconf 2.69. Invocation command line was
CONFIG_FILES = $CONFIG_FILES
@ -13573,7 +13689,7 @@ _ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_cs_config="`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`"
ac_cs_version="\\
libjpeg config.status 9.0.0
libjpeg config.status 9.1.0
configured by $0, generated by GNU Autoconf 2.69,
with options \\"\$ac_cs_config\\"
@ -14632,7 +14748,7 @@ $as_echo X"$mf" |
DEPDIR=`sed -n 's/^DEPDIR = //p' < "$mf"`
test -z "$DEPDIR" && continue
am__include=`sed -n 's/^am__include = //p' < "$mf"`
test -z "am__include" && continue
test -z "$am__include" && continue
am__quote=`sed -n 's/^am__quote = //p' < "$mf"`
# Find all dependency output files, they are included files with
# $(DEPDIR) in their names. We invoke sed twice because it is the

View File

@ -5,7 +5,7 @@
# Configure script for IJG libjpeg
#
AC_INIT([libjpeg], [9.0.0])
AC_INIT([libjpeg], [9.1.0])
# Directory where autotools helper scripts lives.
AC_CONFIG_AUX_DIR([.])

View File

@ -1,7 +1,7 @@
#! /bin/sh
# depcomp - compile a program generating dependencies as side-effects
scriptversion=2012-10-18.11; # UTC
scriptversion=2013-05-30.07; # UTC
# Copyright (C) 1999-2013 Free Software Foundation, Inc.
@ -552,6 +552,7 @@ $ {
G
p
}' >> "$depfile"
echo >> "$depfile" # make sure the fragment doesn't end with a backslash
rm -f "$tmpdepfile"
;;

View File

@ -1,4 +1,4 @@
.TH DJPEG 1 "3 October 2009"
.TH DJPEG 1 "23 November 2013"
.SH NAME
djpeg \- decompress a JPEG file to an image file
.SH SYNOPSIS
@ -246,7 +246,7 @@ Communications of the ACM, April 1991 (vol. 34, no. 4), pp. 30-44.
.SH AUTHOR
Independent JPEG Group
.SH BUGS
To avoid the Unisys LZW patent,
To avoid the Unisys LZW patent (now expired),
.B djpeg
produces uncompressed GIF files. These are larger than they should be, but
are readable by standard GIF decoders.

View File

@ -1,6 +1,6 @@
IJG JPEG LIBRARY: FILE LIST
Copyright (C) 1994-2012, Thomas G. Lane, Guido Vollbeding.
Copyright (C) 1994-2013, Thomas G. Lane, Guido Vollbeding.
This file is part of the Independent JPEG Group's software.
For conditions of distribution and use, see the accompanying README file.
@ -198,6 +198,7 @@ config.sub
depcomp
missing
ar-lib
compile
install-sh Install shell script for those Unix systems lacking one.
Makefile.in Makefile input for configure.
Makefile.am Source file for use with Automake to generate Makefile.in.

View File

@ -1,6 +1,6 @@
INSTALLATION INSTRUCTIONS for the Independent JPEG Group's JPEG software
Copyright (C) 1991-2012, Thomas G. Lane, Guido Vollbeding.
Copyright (C) 1991-2013, Thomas G. Lane, Guido Vollbeding.
This file is part of the Independent JPEG Group's software.
For conditions of distribution and use, see the accompanying README file.
@ -418,54 +418,58 @@ support as follows:
the directory containing the URT "librle.a" file (typically the
"lib" subdirectory of the URT distribution).
Support for 12-bit-deep pixel data:
Support for 9-bit to 12-bit deep pixel data:
The JPEG standard allows either 8-bit or 12-bit data precision. (For color,
this means 8 or 12 bits per channel, of course.) If you need to work with
deeper than 8-bit data, you can compile the IJG code for 12-bit operation.
The IJG code currently allows 8, 9, 10, 11, or 12 bits sample data precision.
(For color, this means 8 to 12 bits per channel, of course.) If you need to
work with deeper than 8-bit data, you can compile the IJG code for 9-bit to
12-bit operation.
To do so:
1. In jmorecfg.h, define BITS_IN_JSAMPLE as 12 rather than 8.
1. In jmorecfg.h, define BITS_IN_JSAMPLE as 9, 10, 11, or 12 rather than 8.
2. In jconfig.h, undefine BMP_SUPPORTED, RLE_SUPPORTED, and TARGA_SUPPORTED,
because the code for those formats doesn't handle 12-bit data and won't
even compile. (The PPM code does work, as explained below. The GIF
code works too; it scales 8-bit GIF data to and from 12-bit depth
automatically.)
because the code for those formats doesn't handle deeper than 8-bit data
and won't even compile. (The PPM code does work, as explained below.
The GIF code works too; it scales 8-bit GIF data to and from 12-bit
depth automatically.)
3. Compile. Don't expect "make test" to pass, since the supplied test
files are for 8-bit data.
Currently, 12-bit support does not work on 16-bit-int machines.
Currently, 9-bit to 12-bit support does not work on 16-bit-int machines.
Note that a 12-bit version will not read 8-bit JPEG files, nor vice versa;
so you'll want to keep around a regular 8-bit compilation as well.
(Run-time selection of data depth, to allow a single copy that does both,
is possible but would probably slow things down considerably; it's very low
on our to-do list.)
Run-time selection and conversion of data precision are currently not
supported and may be added later.
Exception: The transcoding part (jpegtran) supports all settings in a
single instance, since it operates on the level of DCT coefficients and
not sample values.
The PPM reader (rdppm.c) can read 12-bit data from either text-format or
binary-format PPM and PGM files. Binary-format PPM/PGM files which have a
maxval greater than 255 are assumed to use 2 bytes per sample, MSB first
(big-endian order). As of early 1995, 2-byte binary format is not
The PPM reader (rdppm.c) can read deeper than 8-bit data from either
text-format or binary-format PPM and PGM files. Binary-format PPM/PGM files
which have a maxval greater than 255 are assumed to use 2 bytes per sample,
MSB first (big-endian order). As of early 1995, 2-byte binary format is not
officially supported by the PBMPLUS library, but it is expected that a
future release of PBMPLUS will support it. Note that the PPM reader will
read files of any maxval regardless of the BITS_IN_JSAMPLE setting; incoming
data is automatically rescaled to either maxval=255 or maxval=4095 as
appropriate for the cjpeg bit depth.
data is automatically rescaled to maxval=MAXJSAMPLE as appropriate for the
cjpeg bit depth.
The PPM writer (wrppm.c) will normally write 2-byte binary PPM or PGM
format, maxval 4095, when compiled with BITS_IN_JSAMPLE=12. Since this
format, maxval=MAXJSAMPLE, when compiled with BITS_IN_JSAMPLE>8. Since this
format is not yet widely supported, you can disable it by compiling wrppm.c
with PPM_NORAWWORD defined; then the data is scaled down to 8 bits to make a
standard 1-byte/sample PPM or PGM file. (Yes, this means still another copy
of djpeg to keep around. But hopefully you won't need it for very long.
Poskanzer's supposed to get that new PBMPLUS release out Real Soon Now.)
Of course, if you are working with 12-bit data, you probably have it stored
in some other, nonstandard format. In that case you'll probably want to
write your own I/O modules to read and write your format.
Of course, if you are working with 9-bit to 12-bit data, you probably have
it stored in some other, nonstandard format. In that case you'll probably
want to write your own I/O modules to read and write your format.
Note that a 12-bit version of cjpeg always runs in "-optimize" mode, in
order to generate valid Huffman tables. This is necessary because our
default Huffman tables only cover 8-bit data.
Note:
The standard Huffman tables are only valid for 8-bit data precision. If
you selected more than 8-bit data precision, cjpeg uses arithmetic coding
by default. The Huffman encoder normally uses entropy optimization to
compute usable tables for higher precision. Otherwise, you'll have to
supply different default Huffman tables.
Removing code:
@ -859,6 +863,12 @@ add something like this to your jconfig.h file:
#ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */
typedef unsigned char boolean;
#endif
#ifndef FALSE /* in case these macros already exist */
#define FALSE 0 /* values of boolean */
#endif
#ifndef TRUE
#define TRUE 1
#endif
#define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */
(This is already in jconfig.vc, by the way.)

View File

@ -2,6 +2,7 @@
* jcapistd.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* Modified 2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -145,7 +146,7 @@ jpeg_write_raw_data (j_compress_ptr cinfo, JSAMPIMAGE data,
(*cinfo->master->pass_startup) (cinfo);
/* Verify that at least one iMCU row has been passed. */
lines_per_iMCU_row = cinfo->max_v_samp_factor * DCTSIZE;
lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_v_scaled_size;
if (num_lines < lines_per_iMCU_row)
ERREXIT(cinfo, JERR_BUFFER_SIZE);

View File

@ -1,7 +1,7 @@
/*
* jcarith.c
*
* Developed 1997-2012 by Guido Vollbeding.
* Developed 1997-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -362,7 +362,6 @@ METHODDEF(boolean)
encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
JBLOCKROW block;
unsigned char *st;
int blkn, ci, tbl;
int v, v2, m;
@ -381,14 +380,13 @@ encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
/* Encode the MCU data blocks */
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
block = MCU_data[blkn];
ci = cinfo->MCU_membership[blkn];
tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
/* Compute the DC value after the required point transform by Al.
* This is simply an arithmetic right shift.
*/
m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al);
m = IRIGHT_SHIFT((int) (MCU_data[blkn][0][0]), cinfo->Al);
/* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
@ -453,11 +451,11 @@ METHODDEF(boolean)
encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
const int * natural_order;
JBLOCKROW block;
unsigned char *st;
int tbl, k, ke;
int v, v2, m;
const int * natural_order;
/* Emit restart marker if needed */
if (cinfo->restart_interval) {
@ -552,6 +550,8 @@ encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
/*
* MCU encoding for DC successive approximation refinement scan.
* Note: we assume such scans can be multi-component,
* although the spec is not very clear on the point.
*/
METHODDEF(boolean)
@ -593,11 +593,11 @@ METHODDEF(boolean)
encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
const int * natural_order;
JBLOCKROW block;
unsigned char *st;
int tbl, k, ke, kex;
int v;
const int * natural_order;
/* Emit restart marker if needed */
if (cinfo->restart_interval) {
@ -692,12 +692,13 @@ METHODDEF(boolean)
encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
jpeg_component_info * compptr;
const int * natural_order;
JBLOCKROW block;
unsigned char *st;
int blkn, ci, tbl, k, ke;
int tbl, k, ke;
int v, v2, m;
const int * natural_order;
int blkn, ci;
jpeg_component_info * compptr;
/* Emit restart marker if needed */
if (cinfo->restart_interval) {

133
jccolor.c
View File

@ -2,7 +2,7 @@
* jccolor.c
*
* Copyright (C) 1991-1996, Thomas G. Lane.
* Modified 2011-2012 by Guido Vollbeding.
* Modified 2011-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -29,13 +29,25 @@ typedef my_color_converter * my_cconvert_ptr;
/**************** RGB -> YCbCr conversion: most common case **************/
/*
* YCbCr is defined per CCIR 601-1, except that Cb and Cr are
* normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
* The conversion equations to be implemented are therefore
* Y = 0.29900 * R + 0.58700 * G + 0.11400 * B
* Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE
* Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE
* (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
* YCbCr is defined per Recommendation ITU-R BT.601-7 (03/2011),
* previously known as Recommendation CCIR 601-1, except that Cb and Cr
* are normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
* sRGB (standard RGB color space) is defined per IEC 61966-2-1:1999.
* sYCC (standard luma-chroma-chroma color space with extended gamut)
* is defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex F.
* bg-sRGB and bg-sYCC (big gamut standard color spaces)
* are defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex G.
* Note that the derived conversion coefficients given in some of these
* documents are imprecise. The general conversion equations are
* Y = Kr * R + (1 - Kr - Kb) * G + Kb * B
* Cb = 0.5 * (B - Y) / (1 - Kb)
* Cr = 0.5 * (R - Y) / (1 - Kr)
* With Kr = 0.299 and Kb = 0.114 (derived according to SMPTE RP 177-1993
* from the 1953 FCC NTSC primaries and CIE Illuminant C),
* the conversion equations to be implemented are therefore
* Y = 0.299 * R + 0.587 * G + 0.114 * B
* Cb = -0.168735892 * R - 0.331264108 * G + 0.5 * B + CENTERJSAMPLE
* Cr = 0.5 * R - 0.418687589 * G - 0.081312411 * B + CENTERJSAMPLE
* Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2,
* rather than CENTERJSAMPLE, for Cb and Cr. This gave equal positive and
* negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0)
@ -49,9 +61,9 @@ typedef my_color_converter * my_cconvert_ptr;
* For even more speed, we avoid doing any multiplications in the inner loop
* by precalculating the constants times R,G,B for all possible values.
* For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
* for 12-bit samples it is still acceptable. It's not very reasonable for
* 16-bit samples, but if you want lossless storage you shouldn't be changing
* colorspace anyway.
* for 9-bit to 12-bit samples it is still acceptable. It's not very
* reasonable for 16-bit samples, but if you want lossless storage you
* shouldn't be changing colorspace anyway.
* The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included
* in the tables to save adding them separately in the inner loop.
*/
@ -96,21 +108,21 @@ rgb_ycc_start (j_compress_ptr cinfo)
(TABLE_SIZE * SIZEOF(INT32)));
for (i = 0; i <= MAXJSAMPLE; i++) {
rgb_ycc_tab[i+R_Y_OFF] = FIX(0.29900) * i;
rgb_ycc_tab[i+G_Y_OFF] = FIX(0.58700) * i;
rgb_ycc_tab[i+B_Y_OFF] = FIX(0.11400) * i + ONE_HALF;
rgb_ycc_tab[i+R_CB_OFF] = (-FIX(0.16874)) * i;
rgb_ycc_tab[i+G_CB_OFF] = (-FIX(0.33126)) * i;
rgb_ycc_tab[i+R_Y_OFF] = FIX(0.299) * i;
rgb_ycc_tab[i+G_Y_OFF] = FIX(0.587) * i;
rgb_ycc_tab[i+B_Y_OFF] = FIX(0.114) * i + ONE_HALF;
rgb_ycc_tab[i+R_CB_OFF] = (-FIX(0.168735892)) * i;
rgb_ycc_tab[i+G_CB_OFF] = (-FIX(0.331264108)) * i;
/* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr.
* This ensures that the maximum output will round to MAXJSAMPLE
* not MAXJSAMPLE+1, and thus that we don't have to range-limit.
*/
rgb_ycc_tab[i+B_CB_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1;
rgb_ycc_tab[i+B_CB_OFF] = FIX(0.5) * i + CBCR_OFFSET + ONE_HALF-1;
/* B=>Cb and R=>Cr tables are the same
rgb_ycc_tab[i+R_CR_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1;
rgb_ycc_tab[i+R_CR_OFF] = FIX(0.5) * i + CBCR_OFFSET + ONE_HALF-1;
*/
rgb_ycc_tab[i+G_CR_OFF] = (-FIX(0.41869)) * i;
rgb_ycc_tab[i+B_CR_OFF] = (-FIX(0.08131)) * i;
rgb_ycc_tab[i+G_CR_OFF] = (-FIX(0.418687589)) * i;
rgb_ycc_tab[i+B_CR_OFF] = (-FIX(0.081312411)) * i;
}
}
@ -274,6 +286,9 @@ cmyk_ycck_convert (j_compress_ptr cinfo,
* Convert some rows of samples to the JPEG colorspace.
* [R,G,B] to [R-G,G,B-G] conversion with modulo calculation
* (forward reversible color transform).
* This can be seen as an adaption of the general RGB->YCbCr
* conversion equation with Kr = Kb = 0, while replacing the
* normalization by modulo calculation.
*/
METHODDEF(void)
@ -312,7 +327,7 @@ rgb_rgb1_convert (j_compress_ptr cinfo,
/*
* Convert some rows of samples to the JPEG colorspace.
* This version handles grayscale output with no conversion.
* The source can be either plain grayscale or YCbCr (since Y == gray).
* The source can be either plain grayscale or YCC (since Y == gray).
*/
METHODDEF(void)
@ -439,11 +454,13 @@ jinit_color_converter (j_compress_ptr cinfo)
break;
case JCS_RGB:
case JCS_BG_RGB:
if (cinfo->input_components != RGB_PIXELSIZE)
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
break;
case JCS_YCbCr:
case JCS_BG_YCC:
if (cinfo->input_components != 3)
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
break;
@ -460,8 +477,10 @@ jinit_color_converter (j_compress_ptr cinfo)
break;
}
/* Support color transform only for RGB colorspace */
if (cinfo->color_transform && cinfo->jpeg_color_space != JCS_RGB)
/* Support color transform only for RGB colorspaces */
if (cinfo->color_transform &&
cinfo->jpeg_color_space != JCS_RGB &&
cinfo->jpeg_color_space != JCS_BG_RGB)
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
/* Check num_components, set conversion method based on requested space */
@ -469,20 +488,26 @@ jinit_color_converter (j_compress_ptr cinfo)
case JCS_GRAYSCALE:
if (cinfo->num_components != 1)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
if (cinfo->in_color_space == JCS_GRAYSCALE ||
cinfo->in_color_space == JCS_YCbCr)
switch (cinfo->in_color_space) {
case JCS_GRAYSCALE:
case JCS_YCbCr:
case JCS_BG_YCC:
cconvert->pub.color_convert = grayscale_convert;
else if (cinfo->in_color_space == JCS_RGB) {
break;
case JCS_RGB:
cconvert->pub.start_pass = rgb_ycc_start;
cconvert->pub.color_convert = rgb_gray_convert;
} else
break;
default:
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
}
break;
case JCS_RGB:
case JCS_BG_RGB:
if (cinfo->num_components != 3)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
if (cinfo->in_color_space == JCS_RGB) {
if (cinfo->in_color_space == cinfo->jpeg_color_space) {
switch (cinfo->color_transform) {
case JCT_NONE:
cconvert->pub.color_convert = rgb_convert;
@ -492,7 +517,6 @@ jinit_color_converter (j_compress_ptr cinfo)
break;
default:
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
break;
}
} else
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
@ -501,13 +525,48 @@ jinit_color_converter (j_compress_ptr cinfo)
case JCS_YCbCr:
if (cinfo->num_components != 3)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
if (cinfo->in_color_space == JCS_RGB) {
switch (cinfo->in_color_space) {
case JCS_RGB:
cconvert->pub.start_pass = rgb_ycc_start;
cconvert->pub.color_convert = rgb_ycc_convert;
} else if (cinfo->in_color_space == JCS_YCbCr)
break;
case JCS_YCbCr:
cconvert->pub.color_convert = null_convert;
else
break;
default:
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
}
break;
case JCS_BG_YCC:
if (cinfo->num_components != 3)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
switch (cinfo->in_color_space) {
case JCS_RGB:
/* For conversion from normal RGB input to BG_YCC representation,
* the Cb/Cr values are first computed as usual, and then
* quantized further after DCT processing by a factor of
* 2 in reference to the nominal quantization factor.
*/
/* need quantization scale by factor of 2 after DCT */
cinfo->comp_info[1].component_needed = TRUE;
cinfo->comp_info[2].component_needed = TRUE;
/* compute normal YCC first */
cconvert->pub.start_pass = rgb_ycc_start;
cconvert->pub.color_convert = rgb_ycc_convert;
break;
case JCS_YCbCr:
/* need quantization scale by factor of 2 after DCT */
cinfo->comp_info[1].component_needed = TRUE;
cinfo->comp_info[2].component_needed = TRUE;
/*FALLTHROUGH*/
case JCS_BG_YCC:
/* Pass through for BG_YCC input */
cconvert->pub.color_convert = null_convert;
break;
default:
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
}
break;
case JCS_CMYK:
@ -522,13 +581,17 @@ jinit_color_converter (j_compress_ptr cinfo)
case JCS_YCCK:
if (cinfo->num_components != 4)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
if (cinfo->in_color_space == JCS_CMYK) {
switch (cinfo->in_color_space) {
case JCS_CMYK:
cconvert->pub.start_pass = rgb_ycc_start;
cconvert->pub.color_convert = cmyk_ycck_convert;
} else if (cinfo->in_color_space == JCS_YCCK)
break;
case JCS_YCCK:
cconvert->pub.color_convert = null_convert;
else
break;
default:
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
}
break;
default: /* allow null conversion of JCS_UNKNOWN */

View File

@ -2,6 +2,7 @@
* jcdctmgr.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* Modified 2003-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -25,22 +26,30 @@ typedef struct {
/* Pointer to the DCT routine actually in use */
forward_DCT_method_ptr do_dct[MAX_COMPONENTS];
/* The actual post-DCT divisors --- not identical to the quant table
* entries, because of scaling (especially for an unnormalized DCT).
* Each table is given in normal array order.
*/
DCTELEM * divisors[NUM_QUANT_TBLS];
#ifdef DCT_FLOAT_SUPPORTED
/* Same as above for the floating-point case. */
float_DCT_method_ptr do_float_dct[MAX_COMPONENTS];
FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
#endif
} my_fdct_controller;
typedef my_fdct_controller * my_fdct_ptr;
/* The allocated post-DCT divisor tables -- big enough for any
* supported variant and not identical to the quant table entries,
* because of scaling (especially for an unnormalized DCT) --
* are pointed to by dct_table in the per-component comp_info
* structures. Each table is given in normal array order.
*/
typedef union {
DCTELEM int_array[DCTSIZE2];
#ifdef DCT_FLOAT_SUPPORTED
FAST_FLOAT float_array[DCTSIZE2];
#endif
} divisor_table;
/* The current scaled-DCT routines require ISLOW-style divisor tables,
* so be sure to compile that code if either ISLOW or SCALING is requested.
*/
@ -71,7 +80,7 @@ forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
/* This routine is heavily used, so it's worth coding it tightly. */
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
forward_DCT_method_ptr do_dct = fdct->do_dct[compptr->component_index];
DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
DCTELEM * divisors = (DCTELEM *) compptr->dct_table;
DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */
JDIMENSION bi;
@ -134,7 +143,7 @@ forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
/* This routine is heavily used, so it's worth coding it tightly. */
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
float_DCT_method_ptr do_dct = fdct->do_float_dct[compptr->component_index];
FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
FAST_FLOAT * divisors = (FAST_FLOAT *) compptr->dct_table;
FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
JDIMENSION bi;
@ -352,22 +361,17 @@ start_pass_fdctmgr (j_compress_ptr cinfo)
cinfo->quant_tbl_ptrs[qtblno] == NULL)
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
qtbl = cinfo->quant_tbl_ptrs[qtblno];
/* Compute divisors for this quant table */
/* We may do this more than once for same table, but it's not a big deal */
/* Create divisor table from quant table */
switch (method) {
#ifdef PROVIDE_ISLOW_TABLES
case JDCT_ISLOW:
/* For LL&M IDCT method, divisors are equal to raw quantization
* coefficients multiplied by 8 (to counteract scaling).
*/
if (fdct->divisors[qtblno] == NULL) {
fdct->divisors[qtblno] = (DCTELEM *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
DCTSIZE2 * SIZEOF(DCTELEM));
}
dtbl = fdct->divisors[qtblno];
dtbl = (DCTELEM *) compptr->dct_table;
for (i = 0; i < DCTSIZE2; i++) {
dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
dtbl[i] =
((DCTELEM) qtbl->quantval[i]) << (compptr->component_needed ? 4 : 3);
}
fdct->pub.forward_DCT[ci] = forward_DCT;
break;
@ -395,17 +399,12 @@ start_pass_fdctmgr (j_compress_ptr cinfo)
};
SHIFT_TEMPS
if (fdct->divisors[qtblno] == NULL) {
fdct->divisors[qtblno] = (DCTELEM *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
DCTSIZE2 * SIZEOF(DCTELEM));
}
dtbl = fdct->divisors[qtblno];
dtbl = (DCTELEM *) compptr->dct_table;
for (i = 0; i < DCTSIZE2; i++) {
dtbl[i] = (DCTELEM)
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
(INT32) aanscales[i]),
CONST_BITS-3);
compptr->component_needed ? CONST_BITS-4 : CONST_BITS-3);
}
}
fdct->pub.forward_DCT[ci] = forward_DCT;
@ -422,25 +421,20 @@ start_pass_fdctmgr (j_compress_ptr cinfo)
* What's actually stored is 1/divisor so that the inner loop can
* use a multiplication rather than a division.
*/
FAST_FLOAT * fdtbl;
FAST_FLOAT * fdtbl = (FAST_FLOAT *) compptr->dct_table;
int row, col;
static const double aanscalefactor[DCTSIZE] = {
1.0, 1.387039845, 1.306562965, 1.175875602,
1.0, 0.785694958, 0.541196100, 0.275899379
};
if (fdct->float_divisors[qtblno] == NULL) {
fdct->float_divisors[qtblno] = (FAST_FLOAT *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
DCTSIZE2 * SIZEOF(FAST_FLOAT));
}
fdtbl = fdct->float_divisors[qtblno];
i = 0;
for (row = 0; row < DCTSIZE; row++) {
for (col = 0; col < DCTSIZE; col++) {
fdtbl[i] = (FAST_FLOAT)
(1.0 / (((double) qtbl->quantval[i] *
aanscalefactor[row] * aanscalefactor[col] * 8.0)));
(1.0 / ((double) qtbl->quantval[i] *
aanscalefactor[row] * aanscalefactor[col] *
(compptr->component_needed ? 16.0 : 8.0)));
i++;
}
}
@ -464,19 +458,20 @@ GLOBAL(void)
jinit_forward_dct (j_compress_ptr cinfo)
{
my_fdct_ptr fdct;
int i;
int ci;
jpeg_component_info *compptr;
fdct = (my_fdct_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_fdct_controller));
cinfo->fdct = (struct jpeg_forward_dct *) fdct;
cinfo->fdct = &fdct->pub;
fdct->pub.start_pass = start_pass_fdctmgr;
/* Mark divisor tables unallocated */
for (i = 0; i < NUM_QUANT_TBLS; i++) {
fdct->divisors[i] = NULL;
#ifdef DCT_FLOAT_SUPPORTED
fdct->float_divisors[i] = NULL;
#endif
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Allocate a divisor table for each component */
compptr->dct_table =
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(divisor_table));
}
}

View File

@ -2,7 +2,7 @@
* jchuff.c
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* Modified 2006-2009 by Guido Vollbeding.
* Modified 2006-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -308,20 +308,23 @@ emit_bits_s (working_state * state, unsigned int code, int size)
/* Emit some bits; return TRUE if successful, FALSE if must suspend */
{
/* This routine is heavily used, so it's worth coding tightly. */
register INT32 put_buffer = (INT32) code;
register int put_bits = state->cur.put_bits;
register INT32 put_buffer;
register int put_bits;
/* if size is 0, caller used an invalid Huffman table entry */
if (size == 0)
ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
/* mask off any extra bits in code */
put_buffer = ((INT32) code) & ((((INT32) 1) << size) - 1);
put_bits += size; /* new number of bits in buffer */
/* new number of bits in buffer */
put_bits = size + state->cur.put_bits;
put_buffer <<= 24 - put_bits; /* align incoming bits */
put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
/* and merge with old buffer contents */
put_buffer |= state->cur.put_buffer;
while (put_bits >= 8) {
int c = (int) ((put_buffer >> 16) & 0xFF);
@ -347,8 +350,8 @@ emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size)
/* Emit some bits, unless we are in gather mode */
{
/* This routine is heavily used, so it's worth coding tightly. */
register INT32 put_buffer = (INT32) code;
register int put_bits = entropy->saved.put_bits;
register INT32 put_buffer;
register int put_bits;
/* if size is 0, caller used an invalid Huffman table entry */
if (size == 0)
@ -357,9 +360,11 @@ emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size)
if (entropy->gather_statistics)
return; /* do nothing if we're only getting stats */
put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
/* mask off any extra bits in code */
put_buffer = ((INT32) code) & ((((INT32) 1) << size) - 1);
put_bits += size; /* new number of bits in buffer */
/* new number of bits in buffer */
put_bits = size + entropy->saved.put_bits;
put_buffer <<= 24 - put_bits; /* align incoming bits */
@ -543,10 +548,7 @@ encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
register int temp, temp2;
register int nbits;
int blkn, ci;
int Al = cinfo->Al;
JBLOCKROW block;
jpeg_component_info * compptr;
int blkn, ci, tbl;
ISHIFT_TEMPS
entropy->next_output_byte = cinfo->dest->next_output_byte;
@ -559,21 +561,20 @@ encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
/* Encode the MCU data blocks */
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
block = MCU_data[blkn];
ci = cinfo->MCU_membership[blkn];
compptr = cinfo->cur_comp_info[ci];
tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
/* Compute the DC value after the required point transform by Al.
* This is simply an arithmetic right shift.
*/
temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al);
temp = IRIGHT_SHIFT((int) (MCU_data[blkn][0][0]), cinfo->Al);
/* DC differences are figured on the point-transformed values. */
temp = temp2 - entropy->saved.last_dc_val[ci];
entropy->saved.last_dc_val[ci] = temp2;
temp2 = temp - entropy->saved.last_dc_val[ci];
entropy->saved.last_dc_val[ci] = temp;
/* Encode the DC coefficient difference per section G.1.2.1 */
temp2 = temp;
temp = temp2;
if (temp < 0) {
temp = -temp; /* temp is abs value of input */
/* For a negative input, want temp2 = bitwise complement of abs(input) */
@ -594,7 +595,7 @@ encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
/* Count/emit the Huffman-coded symbol for the number of bits */
emit_dc_symbol(entropy, compptr->dc_tbl_no, nbits);
emit_dc_symbol(entropy, tbl, nbits);
/* Emit that number of bits of the value, if positive, */
/* or the complement of its magnitude, if negative. */
@ -628,12 +629,12 @@ METHODDEF(boolean)
encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
{
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
const int * natural_order;
JBLOCKROW block;
register int temp, temp2;
register int nbits;
register int r, k;
int Se, Al;
const int * natural_order;
JBLOCKROW block;
entropy->next_output_byte = cinfo->dest->next_output_byte;
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
@ -731,18 +732,15 @@ encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
/*
* MCU encoding for DC successive approximation refinement scan.
* Note: we assume such scans can be multi-component, although the spec
* is not very clear on the point.
* Note: we assume such scans can be multi-component,
* although the spec is not very clear on the point.
*/
METHODDEF(boolean)
encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
{
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
register int temp;
int blkn;
int Al = cinfo->Al;
JBLOCKROW block;
int Al, blkn;
entropy->next_output_byte = cinfo->dest->next_output_byte;
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
@ -752,13 +750,12 @@ encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
if (entropy->restarts_to_go == 0)
emit_restart_e(entropy, entropy->next_restart_num);
Al = cinfo->Al;
/* Encode the MCU data blocks */
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
block = MCU_data[blkn];
/* We simply emit the Al'th bit of the DC coefficient value. */
temp = (*block)[0];
emit_bits_e(entropy, (unsigned int) (temp >> Al), 1);
emit_bits_e(entropy, (unsigned int) (MCU_data[blkn][0][0] >> Al), 1);
}
cinfo->dest->next_output_byte = entropy->next_output_byte;
@ -786,14 +783,14 @@ METHODDEF(boolean)
encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
{
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
const int * natural_order;
JBLOCKROW block;
register int temp;
register int r, k;
int Se, Al;
int EOB;
char *BR_buffer;
unsigned int BR;
int Se, Al;
const int * natural_order;
JBLOCKROW block;
int absvalues[DCTSIZE2];
entropy->next_output_byte = cinfo->dest->next_output_byte;
@ -918,7 +915,7 @@ encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
{
register int temp, temp2;
register int nbits;
register int k, r, i;
register int r, k;
int Se = state->cinfo->lim_Se;
const int * natural_order = state->cinfo->natural_order;
@ -960,7 +957,7 @@ encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
r = 0; /* r = run length of zeros */
for (k = 1; k <= Se; k++) {
if ((temp = block[natural_order[k]]) == 0) {
if ((temp2 = block[natural_order[k]]) == 0) {
r++;
} else {
/* if run length > 15, must emit special run-length-16 codes (0xF0) */
@ -970,7 +967,7 @@ encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
r -= 16;
}
temp2 = temp;
temp = temp2;
if (temp < 0) {
temp = -temp; /* temp is abs value of input */
/* This code assumes we are on a two's complement machine */
@ -986,8 +983,8 @@ encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
/* Emit Huffman symbol for run length / number of bits */
i = (r << 4) + nbits;
if (! emit_bits_s(state, actbl->ehufco[i], actbl->ehufsi[i]))
temp = (r << 4) + nbits;
if (! emit_bits_s(state, actbl->ehufco[temp], actbl->ehufsi[temp]))
return FALSE;
/* Emit that number of bits of the value, if positive, */
@ -1124,7 +1121,7 @@ htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
{
register int temp;
register int nbits;
register int k, r;
register int r, k;
int Se = cinfo->lim_Se;
const int * natural_order = cinfo->natural_order;
@ -1562,7 +1559,7 @@ jinit_huff_encoder (j_compress_ptr cinfo)
entropy = (huff_entropy_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(huff_entropy_encoder));
cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
cinfo->entropy = &entropy->pub;
entropy->pub.start_pass = start_pass_huff;
/* Mark tables unallocated */

View File

@ -2,6 +2,7 @@
* jcinit.c
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* Modified 2003-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -29,6 +30,24 @@
GLOBAL(void)
jinit_compress_master (j_compress_ptr cinfo)
{
long samplesperrow;
JDIMENSION jd_samplesperrow;
/* For now, precision must match compiled-in value... */
if (cinfo->data_precision != BITS_IN_JSAMPLE)
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
/* Sanity check on image dimensions */
if (cinfo->image_height <= 0 || cinfo->image_width <= 0 ||
cinfo->input_components <= 0)
ERREXIT(cinfo, JERR_EMPTY_IMAGE);
/* Width of an input scanline must be representable as JDIMENSION. */
samplesperrow = (long) cinfo->image_width * (long) cinfo->input_components;
jd_samplesperrow = (JDIMENSION) samplesperrow;
if ((long) jd_samplesperrow != samplesperrow)
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
/* Initialize master control (includes parameter checking/processing) */
jinit_c_master_control(cinfo, FALSE /* full compression */);

View File

@ -2,7 +2,7 @@
* jcmarker.c
*
* Copyright (C) 1991-1998, Thomas G. Lane.
* Modified 2003-2012 by Guido Vollbeding.
* Modified 2003-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -508,8 +508,8 @@ write_marker_byte (j_compress_ptr cinfo, int val)
* Write datastream header.
* This consists of an SOI and optional APPn markers.
* We recommend use of the JFIF marker, but not the Adobe marker,
* when using YCbCr or grayscale data. The JFIF marker should NOT
* be used for any other JPEG colorspace. The Adobe marker is helpful
* when using YCbCr or grayscale data. The JFIF marker is also used
* for other standard JPEG colorspaces. The Adobe marker is helpful
* to distinguish RGB, CMYK, and YCCK colorspaces.
* Note that an application can write additional header markers after
* jpeg_start_compress returns.

View File

@ -2,7 +2,7 @@
* jcmaster.c
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* Modified 2003-2011 by Guido Vollbeding.
* Modified 2003-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -222,8 +222,6 @@ initial_setup (j_compress_ptr cinfo, boolean transcode_only)
{
int ci, ssize;
jpeg_component_info *compptr;
long samplesperrow;
JDIMENSION jd_samplesperrow;
if (transcode_only)
jpeg_calc_trans_dimensions(cinfo);
@ -251,7 +249,7 @@ initial_setup (j_compress_ptr cinfo, boolean transcode_only)
/* Sanity check on image dimensions */
if (cinfo->jpeg_height <= 0 || cinfo->jpeg_width <= 0 ||
cinfo->num_components <= 0 || cinfo->input_components <= 0)
cinfo->num_components <= 0)
ERREXIT(cinfo, JERR_EMPTY_IMAGE);
/* Make sure image isn't bigger than I can handle */
@ -259,14 +257,8 @@ initial_setup (j_compress_ptr cinfo, boolean transcode_only)
(long) cinfo->jpeg_width > (long) JPEG_MAX_DIMENSION)
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
/* Width of an input scanline must be representable as JDIMENSION. */
samplesperrow = (long) cinfo->image_width * (long) cinfo->input_components;
jd_samplesperrow = (JDIMENSION) samplesperrow;
if ((long) jd_samplesperrow != samplesperrow)
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
/* For now, precision must match compiled-in value... */
if (cinfo->data_precision != BITS_IN_JSAMPLE)
/* Only 8 to 12 bits data precision are supported for DCT based JPEG */
if (cinfo->data_precision < 8 || cinfo->data_precision > 12)
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
/* Check that number of components won't exceed internal array sizes */
@ -339,8 +331,10 @@ initial_setup (j_compress_ptr cinfo, boolean transcode_only)
jdiv_round_up((long) cinfo->jpeg_height *
(long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size),
(long) (cinfo->max_v_samp_factor * cinfo->block_size));
/* Mark component needed (this flag isn't actually used for compression) */
compptr->component_needed = TRUE;
/* Don't need quantization scale after DCT,
* until color conversion says otherwise.
*/
compptr->component_needed = FALSE;
}
/* Compute number of fully interleaved MCU rows (number of times that
@ -811,7 +805,7 @@ jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only)
master = (my_master_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_comp_master));
cinfo->master = (struct jpeg_comp_master *) master;
cinfo->master = &master->pub;
master->pub.prepare_for_pass = prepare_for_pass;
master->pub.pass_startup = pass_startup;
master->pub.finish_pass = finish_pass_master;
@ -833,10 +827,14 @@ jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only)
cinfo->num_scans = 1;
}
if ((cinfo->progressive_mode || cinfo->block_size < DCTSIZE) &&
!cinfo->arith_code) /* TEMPORARY HACK ??? */
/* assume default tables no good for progressive or downscale mode */
cinfo->optimize_coding = TRUE;
if (cinfo->optimize_coding)
cinfo->arith_code = FALSE; /* disable arithmetic coding */
else if (! cinfo->arith_code &&
(cinfo->progressive_mode ||
(cinfo->block_size > 1 && cinfo->block_size < DCTSIZE)))
/* TEMPORARY HACK ??? */
/* assume default tables no good for progressive or reduced AC mode */
cinfo->optimize_coding = TRUE; /* force Huffman optimization */
/* Initialize my private state */
if (transcode_only) {

View File

@ -17,11 +17,17 @@
/* Define this if you get warnings about undefined structures. */
#undef INCOMPLETE_TYPES_BROKEN
/* Define "boolean" as unsigned char, not int, on Windows systems. */
/* Define "boolean" as unsigned char, not enum, on Windows systems. */
#ifdef _WIN32
#ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */
typedef unsigned char boolean;
#endif
#ifndef FALSE /* in case these macros already exist */
#define FALSE 0 /* values of boolean */
#endif
#ifndef TRUE
#define TRUE 1
#endif
#define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */
#endif

View File

@ -2,6 +2,7 @@
* jconfig.txt
*
* Copyright (C) 1991-1994, Thomas G. Lane.
* Modified 2009-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -91,12 +92,18 @@
*/
#undef INCOMPLETE_TYPES_BROKEN
/* Define "boolean" as unsigned char, not int, on Windows systems.
/* Define "boolean" as unsigned char, not enum, on Windows systems.
*/
#ifdef _WIN32
#ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */
typedef unsigned char boolean;
#endif
#ifndef FALSE /* in case these macros already exist */
#define FALSE 0 /* values of boolean */
#endif
#ifndef TRUE
#define TRUE 1
#endif
#define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */
#endif

View File

@ -19,6 +19,12 @@
#ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */
typedef unsigned char boolean;
#endif
#ifndef FALSE /* in case these macros already exist */
#define FALSE 0 /* values of boolean */
#endif
#ifndef TRUE
#define TRUE 1
#endif
#define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */

110
jcparam.c
View File

@ -2,7 +2,7 @@
* jcparam.c
*
* Copyright (C) 1991-1998, Thomas G. Lane.
* Modified 2003-2012 by Guido Vollbeding.
* Modified 2003-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -323,18 +323,17 @@ jpeg_set_defaults (j_compress_ptr cinfo)
/* Expect normal source image, not raw downsampled data */
cinfo->raw_data_in = FALSE;
/* Use Huffman coding, not arithmetic coding, by default */
cinfo->arith_code = FALSE;
/* The standard Huffman tables are only valid for 8-bit data precision.
* If the precision is higher, use arithmetic coding.
* (Alternatively, using Huffman coding would be possible with forcing
* optimization on so that usable tables will be computed, or by
* supplying default tables that are valid for the desired precision.)
* Otherwise, use Huffman coding by default.
*/
cinfo->arith_code = cinfo->data_precision > 8 ? TRUE : FALSE;
/* By default, don't do extra passes to optimize entropy coding */
cinfo->optimize_coding = FALSE;
/* The standard Huffman tables are only valid for 8-bit data precision.
* If the precision is higher, force optimization on so that usable
* tables will be computed. This test can be removed if default tables
* are supplied that are valid for the desired precision.
*/
if (cinfo->data_precision > 8)
cinfo->optimize_coding = TRUE;
/* By default, use the simpler non-cosited sampling alignment */
cinfo->CCIR601_sampling = FALSE;
@ -360,6 +359,9 @@ jpeg_set_defaults (j_compress_ptr cinfo)
* JFIF_minor_version to 2. We could probably get away with just defaulting
* to 1.02, but there may still be some decoders in use that will complain
* about that; saying 1.01 should minimize compatibility problems.
*
* For wide gamut colorspaces (BG_RGB and BG_YCC), the major version will be
* overridden by jpeg_set_colorspace and set to 2.
*/
cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */
cinfo->JFIF_minor_version = 1;
@ -384,6 +386,9 @@ GLOBAL(void)
jpeg_default_colorspace (j_compress_ptr cinfo)
{
switch (cinfo->in_color_space) {
case JCS_UNKNOWN:
jpeg_set_colorspace(cinfo, JCS_UNKNOWN);
break;
case JCS_GRAYSCALE:
jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);
break;
@ -399,8 +404,12 @@ jpeg_default_colorspace (j_compress_ptr cinfo)
case JCS_YCCK:
jpeg_set_colorspace(cinfo, JCS_YCCK);
break;
case JCS_UNKNOWN:
jpeg_set_colorspace(cinfo, JCS_UNKNOWN);
case JCS_BG_RGB:
/* No translation for now -- conversion to BG_YCC not yet supportet */
jpeg_set_colorspace(cinfo, JCS_BG_RGB);
break;
case JCS_BG_YCC:
jpeg_set_colorspace(cinfo, JCS_BG_YCC);
break;
default:
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
@ -441,29 +450,40 @@ jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */
switch (colorspace) {
case JCS_UNKNOWN:
cinfo->num_components = cinfo->input_components;
if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS)
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
MAX_COMPONENTS);
for (ci = 0; ci < cinfo->num_components; ci++) {
SET_COMP(ci, ci, 1,1, 0, 0,0);
}
break;
case JCS_GRAYSCALE:
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
cinfo->num_components = 1;
/* JFIF specifies component ID 1 */
SET_COMP(0, 1, 1,1, 0, 0,0);
SET_COMP(0, 0x01, 1,1, 0, 0,0);
break;
case JCS_RGB:
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */
cinfo->num_components = 3;
SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0);
SET_COMP(1, 0x47 /* 'G' */, 1,1, 0,
SET_COMP(0, 0x52 /* 'R' */, 1,1, 0,
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0,
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0);
SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0);
SET_COMP(2, 0x42 /* 'B' */, 1,1, 0,
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0,
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0);
SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0);
break;
case JCS_YCbCr:
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
cinfo->num_components = 3;
/* JFIF specifies component IDs 1,2,3 */
/* We default to 2x2 subsamples of chrominance */
SET_COMP(0, 1, 2,2, 0, 0,0);
SET_COMP(1, 2, 1,1, 1, 1,1);
SET_COMP(2, 3, 1,1, 1, 1,1);
SET_COMP(0, 0x01, 2,2, 0, 0,0);
SET_COMP(1, 0x02, 1,1, 1, 1,1);
SET_COMP(2, 0x03, 1,1, 1, 1,1);
break;
case JCS_CMYK:
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */
@ -476,19 +496,33 @@ jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
case JCS_YCCK:
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */
cinfo->num_components = 4;
SET_COMP(0, 1, 2,2, 0, 0,0);
SET_COMP(1, 2, 1,1, 1, 1,1);
SET_COMP(2, 3, 1,1, 1, 1,1);
SET_COMP(3, 4, 2,2, 0, 0,0);
SET_COMP(0, 0x01, 2,2, 0, 0,0);
SET_COMP(1, 0x02, 1,1, 1, 1,1);
SET_COMP(2, 0x03, 1,1, 1, 1,1);
SET_COMP(3, 0x04, 2,2, 0, 0,0);
break;
case JCS_UNKNOWN:
cinfo->num_components = cinfo->input_components;
if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS)
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
MAX_COMPONENTS);
for (ci = 0; ci < cinfo->num_components; ci++) {
SET_COMP(ci, ci, 1,1, 0, 0,0);
}
case JCS_BG_RGB:
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
cinfo->JFIF_major_version = 2; /* Set JFIF major version = 2 */
cinfo->num_components = 3;
/* Add offset 0x20 to the normal R/G/B component IDs */
SET_COMP(0, 0x72 /* 'r' */, 1,1, 0,
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0,
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0);
SET_COMP(1, 0x67 /* 'g' */, 1,1, 0, 0,0);
SET_COMP(2, 0x62 /* 'b' */, 1,1, 0,
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0,
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0);
break;
case JCS_BG_YCC:
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
cinfo->JFIF_major_version = 2; /* Set JFIF major version = 2 */
cinfo->num_components = 3;
/* Add offset 0x20 to the normal Cb/Cr component IDs */
/* We default to 2x2 subsamples of chrominance */
SET_COMP(0, 0x01, 2,2, 0, 0,0);
SET_COMP(1, 0x22, 1,1, 1, 1,1);
SET_COMP(2, 0x23, 1,1, 1, 1,1);
break;
default:
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
@ -572,8 +606,10 @@ jpeg_simple_progression (j_compress_ptr cinfo)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* Figure space needed for script. Calculation must match code below! */
if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
/* Custom script for YCbCr color images. */
if (ncomps == 3 &&
(cinfo->jpeg_color_space == JCS_YCbCr ||
cinfo->jpeg_color_space == JCS_BG_YCC)) {
/* Custom script for YCC color images. */
nscans = 10;
} else {
/* All-purpose script for other color spaces. */
@ -588,7 +624,7 @@ jpeg_simple_progression (j_compress_ptr cinfo)
* multiple compressions without changing the settings. To avoid a memory
* leak if jpeg_simple_progression is called repeatedly for the same JPEG
* object, we try to re-use previously allocated space, and we allocate
* enough space to handle YCbCr even if initially asked for grayscale.
* enough space to handle YCC even if initially asked for grayscale.
*/
if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) {
cinfo->script_space_size = MAX(nscans, 10);
@ -600,8 +636,10 @@ jpeg_simple_progression (j_compress_ptr cinfo)
cinfo->scan_info = scanptr;
cinfo->num_scans = nscans;
if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
/* Custom script for YCbCr color images. */
if (ncomps == 3 &&
(cinfo->jpeg_color_space == JCS_YCbCr ||
cinfo->jpeg_color_space == JCS_BG_YCC)) {
/* Custom script for YCC color images. */
/* Initial DC scan */
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
/* Initial AC scan: get some luma data out in a hurry */

View File

@ -2,7 +2,7 @@
* jctrans.c
*
* Copyright (C) 1995-1998, Thomas G. Lane.
* Modified 2000-2012 by Guido Vollbeding.
* Modified 2000-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -143,10 +143,10 @@ jpeg_copy_critical_parameters (j_decompress_ptr srcinfo,
* if the application chooses to copy JFIF 1.02 extension markers from
* the source file, we need to copy the version to make sure we don't
* emit a file that has 1.02 extensions but a claimed version of 1.01.
* We will *not*, however, copy version info from mislabeled "2.01" files.
*/
if (srcinfo->saw_JFIF_marker) {
if (srcinfo->JFIF_major_version == 1) {
if (srcinfo->JFIF_major_version == 1 ||
srcinfo->JFIF_major_version == 2) {
dstinfo->JFIF_major_version = srcinfo->JFIF_major_version;
dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version;
}

View File

@ -2,7 +2,7 @@
* jdapimin.c
*
* Copyright (C) 1994-1998, Thomas G. Lane.
* Modified 2009 by Guido Vollbeding.
* Modified 2009-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -114,8 +114,9 @@ jpeg_abort_decompress (j_decompress_ptr cinfo)
LOCAL(void)
default_decompress_parms (j_decompress_ptr cinfo)
{
int cid0, cid1, cid2;
/* Guess the input colorspace, and set output colorspace accordingly. */
/* (Wish JPEG committee had provided a real way to specify this...) */
/* Note application may override our guesses. */
switch (cinfo->num_components) {
case 1:
@ -124,9 +125,22 @@ default_decompress_parms (j_decompress_ptr cinfo)
break;
case 3:
if (cinfo->saw_JFIF_marker) {
cinfo->jpeg_color_space = JCS_YCbCr; /* JFIF implies YCbCr */
} else if (cinfo->saw_Adobe_marker) {
cid0 = cinfo->comp_info[0].component_id;
cid1 = cinfo->comp_info[1].component_id;
cid2 = cinfo->comp_info[2].component_id;
/* First try to guess from the component IDs */
if (cid0 == 0x01 && cid1 == 0x02 && cid2 == 0x03)
cinfo->jpeg_color_space = JCS_YCbCr;
else if (cid0 == 0x01 && cid1 == 0x22 && cid2 == 0x23)
cinfo->jpeg_color_space = JCS_BG_YCC;
else if (cid0 == 0x52 && cid1 == 0x47 && cid2 == 0x42)
cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */
else if (cid0 == 0x72 && cid1 == 0x67 && cid2 == 0x62)
cinfo->jpeg_color_space = JCS_BG_RGB; /* ASCII 'r', 'g', 'b' */
else if (cinfo->saw_JFIF_marker)
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
else if (cinfo->saw_Adobe_marker) {
switch (cinfo->Adobe_transform) {
case 0:
cinfo->jpeg_color_space = JCS_RGB;
@ -140,20 +154,9 @@ default_decompress_parms (j_decompress_ptr cinfo)
break;
}
} else {
/* Saw no special markers, try to guess from the component IDs */
int cid0 = cinfo->comp_info[0].component_id;
int cid1 = cinfo->comp_info[1].component_id;
int cid2 = cinfo->comp_info[2].component_id;
if (cid0 == 1 && cid1 == 2 && cid2 == 3)
cinfo->jpeg_color_space = JCS_YCbCr; /* assume JFIF w/out marker */
else if (cid0 == 82 && cid1 == 71 && cid2 == 66)
cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */
else {
TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2);
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
}
}
/* Always guess RGB is proper output colorspace. */
cinfo->out_color_space = JCS_RGB;
break;

View File

@ -2,6 +2,7 @@
* jdapistd.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* Modified 2002-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*

View File

@ -1,7 +1,7 @@
/*
* jdarith.c
*
* Developed 1997-2012 by Guido Vollbeding.
* Developed 1997-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -395,6 +395,8 @@ decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
/*
* MCU decoding for DC successive approximation refinement scan.
* Note: we assume such scans can be multi-component,
* although the spec is not very clear on the point.
*/
METHODDEF(boolean)
@ -743,6 +745,17 @@ start_pass (j_decompress_ptr cinfo)
}
/*
* Finish up at the end of an arithmetic-compressed scan.
*/
METHODDEF(void)
finish_pass (j_decompress_ptr cinfo)
{
/* no work necessary here */
}
/*
* Module initialization routine for arithmetic entropy decoding.
*/
@ -758,6 +771,7 @@ jinit_arith_decoder (j_decompress_ptr cinfo)
SIZEOF(arith_entropy_decoder));
cinfo->entropy = &entropy->pub;
entropy->pub.start_pass = start_pass;
entropy->pub.finish_pass = finish_pass;
/* Mark tables unallocated */
for (i = 0; i < NUM_ARITH_TBLS; i++) {

222
jdcolor.c
View File

@ -2,7 +2,7 @@
* jdcolor.c
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* Modified 2011-2012 by Guido Vollbeding.
* Modified 2011-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -19,12 +19,15 @@
typedef struct {
struct jpeg_color_deconverter pub; /* public fields */
/* Private state for YCC->RGB conversion */
/* Private state for YCbCr->RGB and BG_YCC->RGB conversion */
int * Cr_r_tab; /* => table for Cr to R conversion */
int * Cb_b_tab; /* => table for Cb to B conversion */
INT32 * Cr_g_tab; /* => table for Cr to G conversion */
INT32 * Cb_g_tab; /* => table for Cb to G conversion */
JSAMPLE * range_limit; /* pointer to normal sample range limit table, */
/* or extended sample range limit table for BG_YCC */
/* Private state for RGB->Y conversion */
INT32 * rgb_y_tab; /* => table for RGB to Y conversion */
} my_color_deconverter;
@ -32,22 +35,44 @@ typedef struct {
typedef my_color_deconverter * my_cconvert_ptr;
/**************** YCbCr -> RGB conversion: most common case **************/
/**************** RGB -> Y conversion: less common case **************/
/*************** YCbCr -> RGB conversion: most common case **************/
/*************** BG_YCC -> RGB conversion: less common case **************/
/*************** RGB -> Y conversion: less common case **************/
/*
* YCbCr is defined per CCIR 601-1, except that Cb and Cr are
* normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
* The conversion equations to be implemented are therefore
* YCbCr is defined per Recommendation ITU-R BT.601-7 (03/2011),
* previously known as Recommendation CCIR 601-1, except that Cb and Cr
* are normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
* sRGB (standard RGB color space) is defined per IEC 61966-2-1:1999.
* sYCC (standard luma-chroma-chroma color space with extended gamut)
* is defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex F.
* bg-sRGB and bg-sYCC (big gamut standard color spaces)
* are defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex G.
* Note that the derived conversion coefficients given in some of these
* documents are imprecise. The general conversion equations are
*
* R = Y + 1.40200 * Cr
* G = Y - 0.34414 * Cb - 0.71414 * Cr
* B = Y + 1.77200 * Cb
* R = Y + K * (1 - Kr) * Cr
* G = Y - K * (Kb * (1 - Kb) * Cb + Kr * (1 - Kr) * Cr) / (1 - Kr - Kb)
* B = Y + K * (1 - Kb) * Cb
*
* Y = 0.29900 * R + 0.58700 * G + 0.11400 * B
* Y = Kr * R + (1 - Kr - Kb) * G + Kb * B
*
* With Kr = 0.299 and Kb = 0.114 (derived according to SMPTE RP 177-1993
* from the 1953 FCC NTSC primaries and CIE Illuminant C), K = 2 for sYCC,
* the conversion equations to be implemented are therefore
*
* R = Y + 1.402 * Cr
* G = Y - 0.344136286 * Cb - 0.714136286 * Cr
* B = Y + 1.772 * Cb
*
* Y = 0.299 * R + 0.587 * G + 0.114 * B
*
* where Cb and Cr represent the incoming values less CENTERJSAMPLE.
* (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
* For bg-sYCC, with K = 4, the equations are
*
* R = Y + 2.804 * Cr
* G = Y - 0.688272572 * Cb - 1.428272572 * Cr
* B = Y + 3.544 * Cb
*
* To avoid floating-point arithmetic, we represent the fractional constants
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide
@ -58,9 +83,9 @@ typedef my_color_deconverter * my_cconvert_ptr;
* For even more speed, we avoid doing any multiplications in the inner loop
* by precalculating the constants times Cb and Cr for all possible values.
* For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
* for 12-bit samples it is still acceptable. It's not very reasonable for
* 16-bit samples, but if you want lossless storage you shouldn't be changing
* colorspace anyway.
* for 9-bit to 12-bit samples it is still acceptable. It's not very
* reasonable for 16-bit samples, but if you want lossless storage you
* shouldn't be changing colorspace anyway.
* The Cr=>R and Cb=>B values can be rounded to integers in advance; the
* values for the G calculation are left scaled up, since we must add them
* together before rounding.
@ -84,11 +109,12 @@ typedef my_color_deconverter * my_cconvert_ptr;
/*
* Initialize tables for YCC->RGB colorspace conversion.
* Initialize tables for YCbCr->RGB and BG_YCC->RGB colorspace conversion.
*/
LOCAL(void)
build_ycc_rgb_table (j_decompress_ptr cinfo)
/* Normal case, sYCC */
{
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
int i;
@ -108,24 +134,84 @@ build_ycc_rgb_table (j_decompress_ptr cinfo)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(INT32));
cconvert->range_limit = cinfo->sample_range_limit;
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
/* Cr=>R value is nearest int to 1.40200 * x */
/* Cr=>R value is nearest int to 1.402 * x */
cconvert->Cr_r_tab[i] = (int)
RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
/* Cb=>B value is nearest int to 1.77200 * x */
RIGHT_SHIFT(FIX(1.402) * x + ONE_HALF, SCALEBITS);
/* Cb=>B value is nearest int to 1.772 * x */
cconvert->Cb_b_tab[i] = (int)
RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
/* Cr=>G value is scaled-up -0.71414 * x */
cconvert->Cr_g_tab[i] = (- FIX(0.71414)) * x;
/* Cb=>G value is scaled-up -0.34414 * x */
RIGHT_SHIFT(FIX(1.772) * x + ONE_HALF, SCALEBITS);
/* Cr=>G value is scaled-up -0.714136286 * x */
cconvert->Cr_g_tab[i] = (- FIX(0.714136286)) * x;
/* Cb=>G value is scaled-up -0.344136286 * x */
/* We also add in ONE_HALF so that need not do it in inner loop */
cconvert->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF;
cconvert->Cb_g_tab[i] = (- FIX(0.344136286)) * x + ONE_HALF;
}
}
LOCAL(void)
build_bg_ycc_rgb_table (j_decompress_ptr cinfo)
/* Wide gamut case, bg-sYCC */
{
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
int i;
INT32 x;
SHIFT_TEMPS
cconvert->Cr_r_tab = (int *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(int));
cconvert->Cb_b_tab = (int *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(int));
cconvert->Cr_g_tab = (INT32 *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(INT32));
cconvert->Cb_g_tab = (INT32 *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(INT32));
cconvert->range_limit = (JSAMPLE *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
5 * (MAXJSAMPLE+1) * SIZEOF(JSAMPLE));
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
/* Cr=>R value is nearest int to 2.804 * x */
cconvert->Cr_r_tab[i] = (int)
RIGHT_SHIFT(FIX(2.804) * x + ONE_HALF, SCALEBITS);
/* Cb=>B value is nearest int to 3.544 * x */
cconvert->Cb_b_tab[i] = (int)
RIGHT_SHIFT(FIX(3.544) * x + ONE_HALF, SCALEBITS);
/* Cr=>G value is scaled-up -1.428272572 * x */
cconvert->Cr_g_tab[i] = (- FIX(1.428272572)) * x;
/* Cb=>G value is scaled-up -0.688272572 * x */
/* We also add in ONE_HALF so that need not do it in inner loop */
cconvert->Cb_g_tab[i] = (- FIX(0.688272572)) * x + ONE_HALF;
}
/* Cb and Cr portions can extend to double range in wide gamut case,
* so we prepare an appropriate extended range limit table.
*/
/* First segment of range limit table: limit[x] = 0 for x < 0 */
MEMZERO(cconvert->range_limit, 2 * (MAXJSAMPLE+1) * SIZEOF(JSAMPLE));
cconvert->range_limit += 2 * (MAXJSAMPLE+1);
/* Main part of range limit table: limit[x] = x */
for (i = 0; i <= MAXJSAMPLE; i++)
cconvert->range_limit[i] = (JSAMPLE) i;
/* End of range limit table: limit[x] = MAXJSAMPLE for x > MAXJSAMPLE */
for (; i < 3 * (MAXJSAMPLE+1); i++)
cconvert->range_limit[i] = MAXJSAMPLE;
}
/*
* Convert some rows of samples to the output colorspace.
*
@ -149,7 +235,7 @@ ycc_rgb_convert (j_decompress_ptr cinfo,
register JDIMENSION col;
JDIMENSION num_cols = cinfo->output_width;
/* copy these pointers into registers if possible */
register JSAMPLE * range_limit = cinfo->sample_range_limit;
register JSAMPLE * range_limit = cconvert->range_limit;
register int * Crrtab = cconvert->Cr_r_tab;
register int * Cbbtab = cconvert->Cb_b_tab;
register INT32 * Crgtab = cconvert->Cr_g_tab;
@ -166,7 +252,9 @@ ycc_rgb_convert (j_decompress_ptr cinfo,
y = GETJSAMPLE(inptr0[col]);
cb = GETJSAMPLE(inptr1[col]);
cr = GETJSAMPLE(inptr2[col]);
/* Range-limiting is essential due to noise introduced by DCT losses. */
/* Range-limiting is essential due to noise introduced by DCT losses,
* for extended gamut (sYCC) and wide gamut (bg-sYCC) encodings.
*/
outptr[RGB_RED] = range_limit[y + Crrtab[cr]];
outptr[RGB_GREEN] = range_limit[y +
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
@ -178,7 +266,7 @@ ycc_rgb_convert (j_decompress_ptr cinfo,
}
/**************** Cases other than YCbCr -> RGB **************/
/**************** Cases other than YCC -> RGB ****************/
/*
@ -198,9 +286,9 @@ build_rgb_y_table (j_decompress_ptr cinfo)
(TABLE_SIZE * SIZEOF(INT32)));
for (i = 0; i <= MAXJSAMPLE; i++) {
rgb_y_tab[i+R_Y_OFF] = FIX(0.29900) * i;
rgb_y_tab[i+G_Y_OFF] = FIX(0.58700) * i;
rgb_y_tab[i+B_Y_OFF] = FIX(0.11400) * i + ONE_HALF;
rgb_y_tab[i+R_Y_OFF] = FIX(0.299) * i;
rgb_y_tab[i+G_Y_OFF] = FIX(0.587) * i;
rgb_y_tab[i+B_Y_OFF] = FIX(0.114) * i + ONE_HALF;
}
}
@ -244,6 +332,9 @@ rgb_gray_convert (j_decompress_ptr cinfo,
/*
* [R-G,G,B-G] to [R,G,B] conversion with modulo calculation
* (inverse color transform).
* This can be seen as an adaption of the general YCbCr->RGB
* conversion equation with Kr = Kb = 0, while replacing the
* normalization by modulo calculation.
*/
METHODDEF(void)
@ -387,7 +478,7 @@ null_convert (j_decompress_ptr cinfo,
/*
* Color conversion for grayscale: just copy the data.
* This also works for YCbCr -> grayscale conversion, in which
* This also works for YCC -> grayscale conversion, in which
* we just copy the Y (luminance) component and ignore chrominance.
*/
@ -466,7 +557,9 @@ ycck_cmyk_convert (j_decompress_ptr cinfo,
y = GETJSAMPLE(inptr0[col]);
cb = GETJSAMPLE(inptr1[col]);
cr = GETJSAMPLE(inptr2[col]);
/* Range-limiting is essential due to noise introduced by DCT losses. */
/* Range-limiting is essential due to noise introduced by DCT losses,
* and for extended gamut encodings (sYCC).
*/
outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])]; /* red */
outptr[1] = range_limit[MAXJSAMPLE - (y + /* green */
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
@ -516,6 +609,8 @@ jinit_color_deconverter (j_decompress_ptr cinfo)
case JCS_RGB:
case JCS_YCbCr:
case JCS_BG_RGB:
case JCS_BG_YCC:
if (cinfo->num_components != 3)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
break;
@ -532,8 +627,10 @@ jinit_color_deconverter (j_decompress_ptr cinfo)
break;
}
/* Support color transform only for RGB colorspace */
if (cinfo->color_transform && cinfo->jpeg_color_space != JCS_RGB)
/* Support color transform only for RGB colorspaces */
if (cinfo->color_transform &&
cinfo->jpeg_color_space != JCS_RGB &&
cinfo->jpeg_color_space != JCS_BG_RGB)
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
/* Set out_color_components and conversion method based on requested space.
@ -544,13 +641,16 @@ jinit_color_deconverter (j_decompress_ptr cinfo)
switch (cinfo->out_color_space) {
case JCS_GRAYSCALE:
cinfo->out_color_components = 1;
if (cinfo->jpeg_color_space == JCS_GRAYSCALE ||
cinfo->jpeg_color_space == JCS_YCbCr) {
switch (cinfo->jpeg_color_space) {
case JCS_GRAYSCALE:
case JCS_YCbCr:
case JCS_BG_YCC:
cconvert->pub.color_convert = grayscale_convert;
/* For color->grayscale conversion, only the Y (0) component is needed */
for (ci = 1; ci < cinfo->num_components; ci++)
cinfo->comp_info[ci].component_needed = FALSE;
} else if (cinfo->jpeg_color_space == JCS_RGB) {
break;
case JCS_RGB:
switch (cinfo->color_transform) {
case JCT_NONE:
cconvert->pub.color_convert = rgb_gray_convert;
@ -560,21 +660,29 @@ jinit_color_deconverter (j_decompress_ptr cinfo)
break;
default:
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
break;
}
build_rgb_y_table(cinfo);
} else
break;
default:
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
}
break;
case JCS_RGB:
cinfo->out_color_components = RGB_PIXELSIZE;
if (cinfo->jpeg_color_space == JCS_YCbCr) {
switch (cinfo->jpeg_color_space) {
case JCS_GRAYSCALE:
cconvert->pub.color_convert = gray_rgb_convert;
break;
case JCS_YCbCr:
cconvert->pub.color_convert = ycc_rgb_convert;
build_ycc_rgb_table(cinfo);
} else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) {
cconvert->pub.color_convert = gray_rgb_convert;
} else if (cinfo->jpeg_color_space == JCS_RGB) {
break;
case JCS_BG_YCC:
cconvert->pub.color_convert = ycc_rgb_convert;
build_bg_ycc_rgb_table(cinfo);
break;
case JCS_RGB:
switch (cinfo->color_transform) {
case JCT_NONE:
cconvert->pub.color_convert = rgb_convert;
@ -584,7 +692,25 @@ jinit_color_deconverter (j_decompress_ptr cinfo)
break;
default:
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
}
break;
default:
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
}
break;
case JCS_BG_RGB:
cinfo->out_color_components = RGB_PIXELSIZE;
if (cinfo->jpeg_color_space == JCS_BG_RGB) {
switch (cinfo->color_transform) {
case JCT_NONE:
cconvert->pub.color_convert = rgb_convert;
break;
case JCT_SUBTRACT_GREEN:
cconvert->pub.color_convert = rgb1_rgb_convert;
break;
default:
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
}
} else
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
@ -592,13 +718,17 @@ jinit_color_deconverter (j_decompress_ptr cinfo)
case JCS_CMYK:
cinfo->out_color_components = 4;
if (cinfo->jpeg_color_space == JCS_YCCK) {
switch (cinfo->jpeg_color_space) {
case JCS_YCCK:
cconvert->pub.color_convert = ycck_cmyk_convert;
build_ycc_rgb_table(cinfo);
} else if (cinfo->jpeg_color_space == JCS_CMYK) {
break;
case JCS_CMYK:
cconvert->pub.color_convert = null_convert;
} else
break;
default:
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
}
break;
default:

View File

@ -2,7 +2,7 @@
* jddctmgr.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* Modified 2002-2010 by Guido Vollbeding.
* Modified 2002-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -368,7 +368,7 @@ jinit_inverse_dct (j_decompress_ptr cinfo)
idct = (my_idct_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_idct_controller));
cinfo->idct = (struct jpeg_inverse_dct *) idct;
cinfo->idct = &idct->pub;
idct->pub.start_pass = start_pass;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;

View File

@ -2,7 +2,7 @@
* jdhuff.c
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* Modified 2006-2012 by Guido Vollbeding.
* Modified 2006-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -627,6 +627,22 @@ jpeg_huff_decode (bitread_working_state * state,
}
/*
* Finish up at the end of a Huffman-compressed scan.
*/
METHODDEF(void)
finish_pass_huff (j_decompress_ptr cinfo)
{
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
/* Throw away any unused bits remaining in bit buffer; */
/* include any full bytes in next_marker's count of discarded bytes */
cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
entropy->bitstate.bits_left = 0;
}
/*
* Check for a restart marker & resynchronize decoder.
* Returns FALSE if must suspend.
@ -638,10 +654,7 @@ process_restart (j_decompress_ptr cinfo)
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
int ci;
/* Throw away any unused bits remaining in bit buffer; */
/* include any full bytes in next_marker's count of discarded bytes */
cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
entropy->bitstate.bits_left = 0;
finish_pass_huff(cinfo);
/* Advance past the RSTn marker */
if (! (*cinfo->marker->read_restart_marker) (cinfo))
@ -846,17 +859,15 @@ decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
/*
* MCU decoding for DC successive approximation refinement scan.
* Note: we assume such scans can be multi-component, although the spec
* is not very clear on the point.
* Note: we assume such scans can be multi-component,
* although the spec is not very clear on the point.
*/
METHODDEF(boolean)
decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
int blkn;
JBLOCKROW block;
int p1, blkn;
BITREAD_STATE_VARS;
/* Process restart marker if needed; may have to suspend */
@ -873,15 +884,15 @@ decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
/* Load up working state */
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
/* Outer loop handles each block in the MCU */
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
block = MCU_data[blkn];
/* Encoded data is simply the next bit of the two's-complement DC value */
CHECK_BIT_BUFFER(br_state, 1, return FALSE);
if (GET_BITS(1))
(*block)[0] |= p1;
MCU_data[blkn][0][0] |= p1;
/* Note: since we use |=, repeating the assignment later is safe */
}
@ -1517,6 +1528,7 @@ jinit_huff_decoder (j_decompress_ptr cinfo)
SIZEOF(huff_entropy_decoder));
cinfo->entropy = &entropy->pub;
entropy->pub.start_pass = start_pass_huff_decoder;
entropy->pub.finish_pass = finish_pass_huff;
if (cinfo->progressive_mode) {
/* Create progression status table */

View File

@ -2,7 +2,7 @@
* jdinput.c
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* Modified 2002-2009 by Guido Vollbeding.
* Modified 2002-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -196,7 +196,7 @@ jpeg_core_output_dimensions (j_decompress_ptr cinfo)
/* Hardwire it to "no scaling" */
cinfo->output_width = cinfo->image_width;
cinfo->output_height = cinfo->image_height;
/* jdinput.c has already initialized DCT_scaled_size,
/* initial_setup has already initialized DCT_scaled_size,
* and has computed unscaled downsampled_width and downsampled_height.
*/
@ -216,8 +216,8 @@ initial_setup (j_decompress_ptr cinfo)
(long) cinfo->image_width > (long) JPEG_MAX_DIMENSION)
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
/* For now, precision must match compiled-in value... */
if (cinfo->data_precision != BITS_IN_JSAMPLE)
/* Only 8 to 12 bits data precision are supported for DCT based JPEG */
if (cinfo->data_precision < 8 || cinfo->data_precision > 12)
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
/* Check that number of components won't exceed internal array sizes */
@ -537,6 +537,7 @@ start_input_pass (j_decompress_ptr cinfo)
METHODDEF(void)
finish_input_pass (j_decompress_ptr cinfo)
{
(*cinfo->entropy->finish_pass) (cinfo);
cinfo->inputctl->consume_input = consume_markers;
}
@ -646,7 +647,7 @@ jinit_input_controller (j_decompress_ptr cinfo)
inputctl = (my_inputctl_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
SIZEOF(my_input_controller));
cinfo->inputctl = (struct jpeg_input_controller *) inputctl;
cinfo->inputctl = &inputctl->pub;
/* Initialize method pointers */
inputctl->pub.consume_input = consume_markers;
inputctl->pub.reset_input_controller = reset_input_controller;

View File

@ -2,7 +2,7 @@
* jdmarker.c
*
* Copyright (C) 1991-1998, Thomas G. Lane.
* Modified 2009-2012 by Guido Vollbeding.
* Modified 2009-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -269,8 +269,8 @@ get_sof (j_decompress_ptr cinfo, boolean is_baseline, boolean is_prog,
/* We don't support files in which the image height is initially specified */
/* as 0 and is later redefined by DNL. As long as we have to check that, */
/* might as well have a general sanity check. */
if (cinfo->image_height <= 0 || cinfo->image_width <= 0
|| cinfo->num_components <= 0)
if (cinfo->image_height <= 0 || cinfo->image_width <= 0 ||
cinfo->num_components <= 0)
ERREXIT(cinfo, JERR_EMPTY_IMAGE);
if (length != (cinfo->num_components * 3))
@ -350,6 +350,9 @@ get_sos (j_decompress_ptr cinfo)
/* Detect the case where component id's are not unique, and, if so, */
/* create a fake component id using the same logic as in get_sof. */
/* Note: This also ensures that all of the SOF components are */
/* referenced in the single scan case, which prevents access to */
/* uninitialized memory in later decoding stages. */
for (ci = 0; ci < i; ci++) {
if (c == cinfo->cur_comp_info[ci]->component_id) {
c = cinfo->cur_comp_info[0]->component_id;
@ -493,6 +496,8 @@ get_dht (j_decompress_ptr cinfo)
if (count > 256 || ((INT32) count) > length)
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
MEMZERO(huffval, SIZEOF(huffval)); /* pre-zero array for later copy */
for (i = 0; i < count; i++)
INPUT_BYTE(cinfo, huffval[i], return FALSE);
@ -735,12 +740,13 @@ examine_app0 (j_decompress_ptr cinfo, JOCTET FAR * data,
cinfo->X_density = (GETJOCTET(data[8]) << 8) + GETJOCTET(data[9]);
cinfo->Y_density = (GETJOCTET(data[10]) << 8) + GETJOCTET(data[11]);
/* Check version.
* Major version must be 1, anything else signals an incompatible change.
* Major version must be 1 or 2, anything else signals an incompatible
* change.
* (We used to treat this as an error, but now it's a nonfatal warning,
* because some bozo at Hijaak couldn't read the spec.)
* Minor version should be 0..2, but process anyway if newer.
*/
if (cinfo->JFIF_major_version != 1)
if (cinfo->JFIF_major_version != 1 && cinfo->JFIF_major_version != 2)
WARNMS2(cinfo, JWRN_JFIF_MAJOR,
cinfo->JFIF_major_version, cinfo->JFIF_minor_version);
/* Generate trace messages */

View File

@ -2,7 +2,7 @@
* jdmaster.c
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* Modified 2002-2011 by Guido Vollbeding.
* Modified 2002-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -51,7 +51,8 @@ use_merged_upsample (j_decompress_ptr cinfo)
/* jdmerge.c only supports YCC=>RGB color conversion */
if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 ||
cinfo->out_color_space != JCS_RGB ||
cinfo->out_color_components != RGB_PIXELSIZE)
cinfo->out_color_components != RGB_PIXELSIZE ||
cinfo->color_transform)
return FALSE;
/* and it only handles 2h1v or 2h2v sampling ratios */
if (cinfo->comp_info[0].h_samp_factor != 2 ||
@ -158,9 +159,11 @@ jpeg_calc_output_dimensions (j_decompress_ptr cinfo)
cinfo->out_color_components = 1;
break;
case JCS_RGB:
case JCS_BG_RGB:
cinfo->out_color_components = RGB_PIXELSIZE;
break;
case JCS_YCbCr:
case JCS_BG_YCC:
cinfo->out_color_components = 3;
break;
case JCS_CMYK:
@ -273,10 +276,19 @@ master_selection (j_decompress_ptr cinfo)
long samplesperrow;
JDIMENSION jd_samplesperrow;
/* For now, precision must match compiled-in value... */
if (cinfo->data_precision != BITS_IN_JSAMPLE)
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
/* Initialize dimensions and other stuff */
jpeg_calc_output_dimensions(cinfo);
prepare_range_limit_table(cinfo);
/* Sanity check on image dimensions */
if (cinfo->output_height <= 0 || cinfo->output_width <= 0 ||
cinfo->out_color_components <= 0)
ERREXIT(cinfo, JERR_EMPTY_IMAGE);
/* Width of an output scanline must be representable as JDIMENSION. */
samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components;
jd_samplesperrow = (JDIMENSION) samplesperrow;
@ -521,7 +533,7 @@ jinit_master_decompress (j_decompress_ptr cinfo)
master = (my_master_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_decomp_master));
cinfo->master = (struct jpeg_decomp_master *) master;
cinfo->master = &master->pub;
master->pub.prepare_for_output_pass = prepare_for_output_pass;
master->pub.finish_output_pass = finish_output_pass;

View File

@ -2,6 +2,7 @@
* jdmerge.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* Modified 2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -103,17 +104,17 @@ build_ycc_rgb_table (j_decompress_ptr cinfo)
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
/* Cr=>R value is nearest int to 1.40200 * x */
/* Cr=>R value is nearest int to 1.402 * x */
upsample->Cr_r_tab[i] = (int)
RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
/* Cb=>B value is nearest int to 1.77200 * x */
RIGHT_SHIFT(FIX(1.402) * x + ONE_HALF, SCALEBITS);
/* Cb=>B value is nearest int to 1.772 * x */
upsample->Cb_b_tab[i] = (int)
RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
/* Cr=>G value is scaled-up -0.71414 * x */
upsample->Cr_g_tab[i] = (- FIX(0.71414)) * x;
/* Cb=>G value is scaled-up -0.34414 * x */
RIGHT_SHIFT(FIX(1.772) * x + ONE_HALF, SCALEBITS);
/* Cr=>G value is scaled-up -0.714136286 * x */
upsample->Cr_g_tab[i] = (- FIX(0.714136286)) * x;
/* Cb=>G value is scaled-up -0.344136286 * x */
/* We also add in ONE_HALF so that need not do it in inner loop */
upsample->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF;
upsample->Cb_g_tab[i] = (- FIX(0.344136286)) * x + ONE_HALF;
}
}

View File

@ -2,7 +2,7 @@
* jfdctint.c
*
* Copyright (C) 1991-1996, Thomas G. Lane.
* Modification developed 2003-2009 by Guido Vollbeding.
* Modification developed 2003-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -165,16 +165,18 @@ jpeg_fdct_islow (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
int ctr;
SHIFT_TEMPS
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT;
* furthermore, we scale the results by 2**PASS1_BITS.
* cK represents sqrt(2) * cos(K*pi/16).
*/
dataptr = data;
for (ctr = 0; ctr < DCTSIZE; ctr++) {
elemptr = sample_data[ctr] + start_col;
/* Even part per LL&M figure 1 --- note that published figure is faulty;
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
* rotator "c1" should be "c6".
*/
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
@ -196,47 +198,49 @@ jpeg_fdct_islow (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS);
dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); /* c6 */
/* Add fudge factor here for final descale. */
z1 += ONE << (CONST_BITS-PASS1_BITS-1);
dataptr[2] = (DCTELEM) RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865),
dataptr[2] = (DCTELEM)
RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */
CONST_BITS-PASS1_BITS);
dataptr[6] = (DCTELEM) RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065),
dataptr[6] = (DCTELEM)
RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */
CONST_BITS-PASS1_BITS);
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
* cK represents sqrt(2) * cos(K*pi/16).
* i0..i3 in the paper are tmp0..tmp3 here.
*/
tmp10 = tmp0 + tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp0 + tmp2;
tmp13 = tmp1 + tmp3;
z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
/* Add fudge factor here for final descale. */
z1 += ONE << (CONST_BITS-PASS1_BITS-1);
tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */
tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */
tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */
tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* -c3+c5 */
tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
tmp12 += z1;
tmp13 += z1;
dataptr[1] = (DCTELEM)
RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS);
dataptr[3] = (DCTELEM)
RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS);
dataptr[5] = (DCTELEM)
RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS);
dataptr[7] = (DCTELEM)
RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS);
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
tmp0 += z1 + tmp12;
tmp3 += z1 + tmp13;
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
tmp1 += z1 + tmp13;
tmp2 += z1 + tmp12;
dataptr[1] = (DCTELEM) RIGHT_SHIFT(tmp0, CONST_BITS-PASS1_BITS);
dataptr[3] = (DCTELEM) RIGHT_SHIFT(tmp1, CONST_BITS-PASS1_BITS);
dataptr[5] = (DCTELEM) RIGHT_SHIFT(tmp2, CONST_BITS-PASS1_BITS);
dataptr[7] = (DCTELEM) RIGHT_SHIFT(tmp3, CONST_BITS-PASS1_BITS);
dataptr += DCTSIZE; /* advance pointer to next row */
}
@ -244,12 +248,13 @@ jpeg_fdct_islow (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
/* Pass 2: process columns.
* We remove the PASS1_BITS scaling, but leave the results scaled up
* by an overall factor of 8.
* cK represents sqrt(2) * cos(K*pi/16).
*/
dataptr = data;
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
/* Even part per LL&M figure 1 --- note that published figure is faulty;
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
* rotator "c1" should be "c6".
*/
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
@ -271,47 +276,49 @@ jpeg_fdct_islow (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS);
dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS);
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); /* c6 */
/* Add fudge factor here for final descale. */
z1 += ONE << (CONST_BITS+PASS1_BITS-1);
dataptr[DCTSIZE*2] = (DCTELEM)
RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), CONST_BITS+PASS1_BITS);
RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */
CONST_BITS+PASS1_BITS);
dataptr[DCTSIZE*6] = (DCTELEM)
RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), CONST_BITS+PASS1_BITS);
RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */
CONST_BITS+PASS1_BITS);
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
* cK represents sqrt(2) * cos(K*pi/16).
* i0..i3 in the paper are tmp0..tmp3 here.
*/
tmp10 = tmp0 + tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp0 + tmp2;
tmp13 = tmp1 + tmp3;
z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
/* Add fudge factor here for final descale. */
z1 += ONE << (CONST_BITS+PASS1_BITS-1);
tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */
tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */
tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */
tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* -c3+c5 */
tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
tmp12 += z1;
tmp13 += z1;
dataptr[DCTSIZE*1] = (DCTELEM)
RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS+PASS1_BITS);
dataptr[DCTSIZE*3] = (DCTELEM)
RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS+PASS1_BITS);
dataptr[DCTSIZE*5] = (DCTELEM)
RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS+PASS1_BITS);
dataptr[DCTSIZE*7] = (DCTELEM)
RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS+PASS1_BITS);
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
tmp0 += z1 + tmp12;
tmp3 += z1 + tmp13;
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
tmp1 += z1 + tmp13;
tmp2 += z1 + tmp12;
dataptr[DCTSIZE*1] = (DCTELEM) RIGHT_SHIFT(tmp0, CONST_BITS+PASS1_BITS);
dataptr[DCTSIZE*3] = (DCTELEM) RIGHT_SHIFT(tmp1, CONST_BITS+PASS1_BITS);
dataptr[DCTSIZE*5] = (DCTELEM) RIGHT_SHIFT(tmp2, CONST_BITS+PASS1_BITS);
dataptr[DCTSIZE*7] = (DCTELEM) RIGHT_SHIFT(tmp3, CONST_BITS+PASS1_BITS);
dataptr++; /* advance pointer to next column */
}
@ -338,10 +345,11 @@ jpeg_fdct_7x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
/* Pre-zero output coefficient block. */
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
/* cK represents sqrt(2) * cos(K*pi/14). */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT;
* furthermore, we scale the results by 2**PASS1_BITS.
* cK represents sqrt(2) * cos(K*pi/14).
*/
dataptr = data;
for (ctr = 0; ctr < 7; ctr++) {
@ -472,10 +480,11 @@ jpeg_fdct_6x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
/* Pre-zero output coefficient block. */
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
/* cK represents sqrt(2) * cos(K*pi/12). */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT;
* furthermore, we scale the results by 2**PASS1_BITS.
* cK represents sqrt(2) * cos(K*pi/12).
*/
dataptr = data;
for (ctr = 0; ctr < 6; ctr++) {
@ -585,12 +594,13 @@ jpeg_fdct_5x5 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
/* Pre-zero output coefficient block. */
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
/* We scale the results further by 2 as part of output adaption */
/* scaling for different DCT size. */
/* cK represents sqrt(2) * cos(K*pi/10). */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT;
* furthermore, we scale the results by 2**PASS1_BITS.
* We scale the results further by 2 as part of output adaption
* scaling for different DCT size.
* cK represents sqrt(2) * cos(K*pi/10).
*/
dataptr = data;
for (ctr = 0; ctr < 5; ctr++) {
@ -695,11 +705,12 @@ jpeg_fdct_4x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
/* Pre-zero output coefficient block. */
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
/* We must also scale the output by (8/4)**2 = 2**2, which we add here. */
/* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT;
* furthermore, we scale the results by 2**PASS1_BITS.
* We must also scale the output by (8/4)**2 = 2**2, which we add here.
* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT].
*/
dataptr = data;
for (ctr = 0; ctr < 4; ctr++) {
@ -737,6 +748,7 @@ jpeg_fdct_4x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
/* Pass 2: process columns.
* We remove the PASS1_BITS scaling, but leave the results scaled up
* by an overall factor of 8.
* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT].
*/
dataptr = data;
@ -787,12 +799,13 @@ jpeg_fdct_3x3 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
/* Pre-zero output coefficient block. */
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
/* We scale the results further by 2**2 as part of output adaption */
/* scaling for different DCT size. */
/* cK represents sqrt(2) * cos(K*pi/6). */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT;
* furthermore, we scale the results by 2**PASS1_BITS.
* We scale the results further by 2**2 as part of output adaption
* scaling for different DCT size.
* cK represents sqrt(2) * cos(K*pi/6).
*/
dataptr = data;
for (ctr = 0; ctr < 3; ctr++) {
@ -869,8 +882,9 @@ jpeg_fdct_2x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
/* Pre-zero output coefficient block. */
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT. */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT.
*/
/* Row 0 */
elemptr = sample_data[0] + start_col;
@ -935,11 +949,12 @@ jpeg_fdct_9x9 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
int ctr;
SHIFT_TEMPS
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* we scale the results further by 2 as part of output adaption */
/* scaling for different DCT size. */
/* cK represents sqrt(2) * cos(K*pi/18). */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT;
* we scale the results further by 2 as part of output adaption
* scaling for different DCT size.
* cK represents sqrt(2) * cos(K*pi/18).
*/
dataptr = data;
ctr = 0;
@ -1084,11 +1099,12 @@ jpeg_fdct_10x10 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
int ctr;
SHIFT_TEMPS
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* we scale the results further by 2 as part of output adaption */
/* scaling for different DCT size. */
/* cK represents sqrt(2) * cos(K*pi/20). */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT;
* we scale the results further by 2 as part of output adaption
* scaling for different DCT size.
* cK represents sqrt(2) * cos(K*pi/20).
*/
dataptr = data;
ctr = 0;
@ -1248,11 +1264,12 @@ jpeg_fdct_11x11 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
int ctr;
SHIFT_TEMPS
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* we scale the results further by 2 as part of output adaption */
/* scaling for different DCT size. */
/* cK represents sqrt(2) * cos(K*pi/22). */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT;
* we scale the results further by 2 as part of output adaption
* scaling for different DCT size.
* cK represents sqrt(2) * cos(K*pi/22).
*/
dataptr = data;
ctr = 0;
@ -1430,9 +1447,10 @@ jpeg_fdct_12x12 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
int ctr;
SHIFT_TEMPS
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT. */
/* cK represents sqrt(2) * cos(K*pi/24). */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT.
* cK represents sqrt(2) * cos(K*pi/24).
*/
dataptr = data;
ctr = 0;
@ -1596,9 +1614,10 @@ jpeg_fdct_13x13 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
int ctr;
SHIFT_TEMPS
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT. */
/* cK represents sqrt(2) * cos(K*pi/26). */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT.
* cK represents sqrt(2) * cos(K*pi/26).
*/
dataptr = data;
ctr = 0;
@ -1794,9 +1813,10 @@ jpeg_fdct_14x14 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
int ctr;
SHIFT_TEMPS
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT. */
/* cK represents sqrt(2) * cos(K*pi/28). */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT.
* cK represents sqrt(2) * cos(K*pi/28).
*/
dataptr = data;
ctr = 0;
@ -1995,9 +2015,10 @@ jpeg_fdct_15x15 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
int ctr;
SHIFT_TEMPS
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT. */
/* cK represents sqrt(2) * cos(K*pi/30). */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT.
* cK represents sqrt(2) * cos(K*pi/30).
*/
dataptr = data;
ctr = 0;
@ -2173,10 +2194,11 @@ jpeg_fdct_16x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
int ctr;
SHIFT_TEMPS
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
/* cK represents sqrt(2) * cos(K*pi/32). */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT;
* furthermore, we scale the results by 2**PASS1_BITS.
* cK represents sqrt(2) * cos(K*pi/32).
*/
dataptr = data;
ctr = 0;
@ -2275,6 +2297,7 @@ jpeg_fdct_16x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
* We remove the PASS1_BITS scaling, but leave the results scaled up
* by an overall factor of 8.
* We must also scale the output by (8/16)**2 = 1/2**2.
* cK represents sqrt(2) * cos(K*pi/32).
*/
dataptr = data;
@ -2380,10 +2403,11 @@ jpeg_fdct_16x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
int ctr;
SHIFT_TEMPS
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
/* 16-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/32). */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT;
* furthermore, we scale the results by 2**PASS1_BITS.
* 16-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/32).
*/
dataptr = data;
ctr = 0;
@ -2475,12 +2499,13 @@ jpeg_fdct_16x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
* We remove the PASS1_BITS scaling, but leave the results scaled up
* by an overall factor of 8.
* We must also scale the output by 8/16 = 1/2.
* 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
*/
dataptr = data;
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
/* Even part per LL&M figure 1 --- note that published figure is faulty;
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
* rotator "c1" should be "c6".
*/
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
@ -2501,43 +2526,43 @@ jpeg_fdct_16x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS+1);
dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS+1);
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865),
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); /* c6 */
dataptr[DCTSIZE*2] = (DCTELEM)
DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */
CONST_BITS+PASS1_BITS+1);
dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065),
dataptr[DCTSIZE*6] = (DCTELEM)
DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */
CONST_BITS+PASS1_BITS+1);
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
* 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
* i0..i3 in the paper are tmp0..tmp3 here.
*/
tmp10 = tmp0 + tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp0 + tmp2;
tmp13 = tmp1 + tmp3;
z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */
tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */
tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */
tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* -c3+c5 */
tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
tmp12 += z1;
tmp13 += z1;
dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0 + tmp10 + tmp12,
CONST_BITS+PASS1_BITS+1);
dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1 + tmp11 + tmp13,
CONST_BITS+PASS1_BITS+1);
dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2 + tmp11 + tmp12,
CONST_BITS+PASS1_BITS+1);
dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3 + tmp10 + tmp13,
CONST_BITS+PASS1_BITS+1);
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
tmp0 += z1 + tmp12;
tmp3 += z1 + tmp13;
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
tmp1 += z1 + tmp13;
tmp2 += z1 + tmp12;
dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS+1);
dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS+1);
dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS+1);
dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+PASS1_BITS+1);
dataptr++; /* advance pointer to next column */
}
@ -2564,10 +2589,11 @@ jpeg_fdct_14x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
/* Zero bottom row of output coefficient block. */
MEMZERO(&data[DCTSIZE*7], SIZEOF(DCTELEM) * DCTSIZE);
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
/* 14-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/28). */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT;
* furthermore, we scale the results by 2**PASS1_BITS.
* 14-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/28).
*/
dataptr = data;
for (ctr = 0; ctr < 7; ctr++) {
@ -2727,10 +2753,11 @@ jpeg_fdct_12x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
/* Zero 2 bottom rows of output coefficient block. */
MEMZERO(&data[DCTSIZE*6], SIZEOF(DCTELEM) * DCTSIZE * 2);
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
/* 12-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/24). */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT;
* furthermore, we scale the results by 2**PASS1_BITS.
* 12-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/24).
*/
dataptr = data;
for (ctr = 0; ctr < 6; ctr++) {
@ -2866,10 +2893,11 @@ jpeg_fdct_10x5 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
/* Zero 3 bottom rows of output coefficient block. */
MEMZERO(&data[DCTSIZE*5], SIZEOF(DCTELEM) * DCTSIZE * 3);
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
/* 10-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/20). */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT;
* furthermore, we scale the results by 2**PASS1_BITS.
* 10-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/20).
*/
dataptr = data;
for (ctr = 0; ctr < 5; ctr++) {
@ -2999,17 +3027,19 @@ jpeg_fdct_8x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
/* Zero 4 bottom rows of output coefficient block. */
MEMZERO(&data[DCTSIZE*4], SIZEOF(DCTELEM) * DCTSIZE * 4);
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
/* We must also scale the output by 8/4 = 2, which we add here. */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT;
* furthermore, we scale the results by 2**PASS1_BITS.
* We must also scale the output by 8/4 = 2, which we add here.
* 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
*/
dataptr = data;
for (ctr = 0; ctr < 4; ctr++) {
elemptr = sample_data[ctr] + start_col;
/* Even part per LL&M figure 1 --- note that published figure is faulty;
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
* rotator "c1" should be "c6".
*/
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
@ -3032,47 +3062,49 @@ jpeg_fdct_8x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << (PASS1_BITS+1));
dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << (PASS1_BITS+1));
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); /* c6 */
/* Add fudge factor here for final descale. */
z1 += ONE << (CONST_BITS-PASS1_BITS-2);
dataptr[2] = (DCTELEM) RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865),
dataptr[2] = (DCTELEM)
RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */
CONST_BITS-PASS1_BITS-1);
dataptr[6] = (DCTELEM) RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065),
dataptr[6] = (DCTELEM)
RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */
CONST_BITS-PASS1_BITS-1);
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
* 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
* i0..i3 in the paper are tmp0..tmp3 here.
*/
tmp10 = tmp0 + tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp0 + tmp2;
tmp13 = tmp1 + tmp3;
z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
/* Add fudge factor here for final descale. */
z1 += ONE << (CONST_BITS-PASS1_BITS-2);
tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */
tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */
tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */
tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* -c3+c5 */
tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
tmp12 += z1;
tmp13 += z1;
dataptr[1] = (DCTELEM)
RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS-1);
dataptr[3] = (DCTELEM)
RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS-1);
dataptr[5] = (DCTELEM)
RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS-1);
dataptr[7] = (DCTELEM)
RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS-1);
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
tmp0 += z1 + tmp12;
tmp3 += z1 + tmp13;
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
tmp1 += z1 + tmp13;
tmp2 += z1 + tmp12;
dataptr[1] = (DCTELEM) RIGHT_SHIFT(tmp0, CONST_BITS-PASS1_BITS-1);
dataptr[3] = (DCTELEM) RIGHT_SHIFT(tmp1, CONST_BITS-PASS1_BITS-1);
dataptr[5] = (DCTELEM) RIGHT_SHIFT(tmp2, CONST_BITS-PASS1_BITS-1);
dataptr[7] = (DCTELEM) RIGHT_SHIFT(tmp3, CONST_BITS-PASS1_BITS-1);
dataptr += DCTSIZE; /* advance pointer to next row */
}
@ -3080,7 +3112,8 @@ jpeg_fdct_8x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
/* Pass 2: process columns.
* We remove the PASS1_BITS scaling, but leave the results scaled up
* by an overall factor of 8.
* 4-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
* 4-point FDCT kernel,
* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT].
*/
dataptr = data;
@ -3134,12 +3167,13 @@ jpeg_fdct_6x3 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
/* Pre-zero output coefficient block. */
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
/* We scale the results further by 2 as part of output adaption */
/* scaling for different DCT size. */
/* 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12). */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT;
* furthermore, we scale the results by 2**PASS1_BITS.
* We scale the results further by 2 as part of output adaption
* scaling for different DCT size.
* 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12).
*/
dataptr = data;
for (ctr = 0; ctr < 3; ctr++) {
@ -3234,12 +3268,13 @@ jpeg_fdct_4x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
/* Pre-zero output coefficient block. */
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
/* We must also scale the output by (8/4)*(8/2) = 2**3, which we add here. */
/* 4-point FDCT kernel, */
/* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT;
* furthermore, we scale the results by 2**PASS1_BITS.
* We must also scale the output by (8/4)*(8/2) = 2**3, which we add here.
* 4-point FDCT kernel,
* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT].
*/
dataptr = data;
for (ctr = 0; ctr < 2; ctr++) {
@ -3323,10 +3358,12 @@ jpeg_fdct_2x1 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
*/
/* Even part */
/* Apply unsigned->signed conversion */
data[0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 5);
/* Odd part */
data[1] = (DCTELEM) ((tmp0 - tmp1) << 5);
}
@ -3350,9 +3387,11 @@ jpeg_fdct_8x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
int ctr;
SHIFT_TEMPS
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT;
* furthermore, we scale the results by 2**PASS1_BITS.
* 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
*/
dataptr = data;
ctr = 0;
@ -3360,7 +3399,7 @@ jpeg_fdct_8x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
elemptr = sample_data[ctr] + start_col;
/* Even part per LL&M figure 1 --- note that published figure is faulty;
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
* rotator "c1" should be "c6".
*/
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
@ -3382,39 +3421,43 @@ jpeg_fdct_8x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS);
dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865),
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); /* c6 */
dataptr[2] = (DCTELEM)
DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */
CONST_BITS-PASS1_BITS);
dataptr[6] = (DCTELEM) DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065),
dataptr[6] = (DCTELEM)
DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */
CONST_BITS-PASS1_BITS);
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
* 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
* i0..i3 in the paper are tmp0..tmp3 here.
*/
tmp10 = tmp0 + tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp0 + tmp2;
tmp13 = tmp1 + tmp3;
z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */
tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */
tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */
tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* -c3+c5 */
tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
tmp12 += z1;
tmp13 += z1;
dataptr[1] = (DCTELEM) DESCALE(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS);
dataptr[3] = (DCTELEM) DESCALE(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS);
dataptr[5] = (DCTELEM) DESCALE(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS);
dataptr[7] = (DCTELEM) DESCALE(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS);
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
tmp0 += z1 + tmp12;
tmp3 += z1 + tmp13;
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
tmp1 += z1 + tmp13;
tmp2 += z1 + tmp12;
dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS);
dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS);
dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS);
dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS-PASS1_BITS);
ctr++;
@ -3541,10 +3584,11 @@ jpeg_fdct_7x14 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
/* Pre-zero output coefficient block. */
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
/* 7-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/14). */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT;
* furthermore, we scale the results by 2**PASS1_BITS.
* 7-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/14).
*/
dataptr = data;
ctr = 0;
@ -3721,10 +3765,11 @@ jpeg_fdct_6x12 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
/* Pre-zero output coefficient block. */
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
/* 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12). */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT;
* furthermore, we scale the results by 2**PASS1_BITS.
* 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12).
*/
dataptr = data;
ctr = 0;
@ -3870,10 +3915,11 @@ jpeg_fdct_5x10 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
/* Pre-zero output coefficient block. */
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
/* 5-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/10). */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT;
* furthermore, we scale the results by 2**PASS1_BITS.
* 5-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/10).
*/
dataptr = data;
ctr = 0;
@ -4015,11 +4061,13 @@ jpeg_fdct_4x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
/* Pre-zero output coefficient block. */
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
/* We must also scale the output by 8/4 = 2, which we add here. */
/* 4-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT;
* furthermore, we scale the results by 2**PASS1_BITS.
* We must also scale the output by 8/4 = 2, which we add here.
* 4-point FDCT kernel,
* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT].
*/
dataptr = data;
for (ctr = 0; ctr < DCTSIZE; ctr++) {
@ -4057,12 +4105,13 @@ jpeg_fdct_4x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
/* Pass 2: process columns.
* We remove the PASS1_BITS scaling, but leave the results scaled up
* by an overall factor of 8.
* 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
*/
dataptr = data;
for (ctr = 0; ctr < 4; ctr++) {
/* Even part per LL&M figure 1 --- note that published figure is faulty;
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
* rotator "c1" should be "c6".
*/
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
@ -4084,47 +4133,49 @@ jpeg_fdct_4x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS);
dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS);
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); /* c6 */
/* Add fudge factor here for final descale. */
z1 += ONE << (CONST_BITS+PASS1_BITS-1);
dataptr[DCTSIZE*2] = (DCTELEM)
RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), CONST_BITS+PASS1_BITS);
RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */
CONST_BITS+PASS1_BITS);
dataptr[DCTSIZE*6] = (DCTELEM)
RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), CONST_BITS+PASS1_BITS);
RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */
CONST_BITS+PASS1_BITS);
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
* 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
* i0..i3 in the paper are tmp0..tmp3 here.
*/
tmp10 = tmp0 + tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp0 + tmp2;
tmp13 = tmp1 + tmp3;
z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
/* Add fudge factor here for final descale. */
z1 += ONE << (CONST_BITS+PASS1_BITS-1);
tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */
tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */
tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */
tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* -c3+c5 */
tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
tmp12 += z1;
tmp13 += z1;
dataptr[DCTSIZE*1] = (DCTELEM)
RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS+PASS1_BITS);
dataptr[DCTSIZE*3] = (DCTELEM)
RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS+PASS1_BITS);
dataptr[DCTSIZE*5] = (DCTELEM)
RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS+PASS1_BITS);
dataptr[DCTSIZE*7] = (DCTELEM)
RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS+PASS1_BITS);
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
tmp0 += z1 + tmp12;
tmp3 += z1 + tmp13;
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
tmp1 += z1 + tmp13;
tmp2 += z1 + tmp12;
dataptr[DCTSIZE*1] = (DCTELEM) RIGHT_SHIFT(tmp0, CONST_BITS+PASS1_BITS);
dataptr[DCTSIZE*3] = (DCTELEM) RIGHT_SHIFT(tmp1, CONST_BITS+PASS1_BITS);
dataptr[DCTSIZE*5] = (DCTELEM) RIGHT_SHIFT(tmp2, CONST_BITS+PASS1_BITS);
dataptr[DCTSIZE*7] = (DCTELEM) RIGHT_SHIFT(tmp3, CONST_BITS+PASS1_BITS);
dataptr++; /* advance pointer to next column */
}
@ -4150,12 +4201,13 @@ jpeg_fdct_3x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
/* Pre-zero output coefficient block. */
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
/* We scale the results further by 2 as part of output adaption */
/* scaling for different DCT size. */
/* 3-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/6). */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT;
* furthermore, we scale the results by 2**PASS1_BITS.
* We scale the results further by 2 as part of output adaption
* scaling for different DCT size.
* 3-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/6).
*/
dataptr = data;
for (ctr = 0; ctr < 6; ctr++) {
@ -4255,9 +4307,10 @@ jpeg_fdct_2x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
/* Pre-zero output coefficient block. */
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT. */
/* We must also scale the output by (8/2)*(8/4) = 2**3, which we add here. */
/* Pass 1: process rows.
* Note results are scaled up by sqrt(8) compared to a true DCT.
* We must also scale the output by (8/2)*(8/4) = 2**3, which we add here.
*/
dataptr = data;
for (ctr = 0; ctr < 4; ctr++) {
@ -4329,18 +4382,23 @@ jpeg_fdct_1x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
/* Pre-zero output coefficient block. */
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
tmp0 = GETJSAMPLE(sample_data[0][start_col]);
tmp1 = GETJSAMPLE(sample_data[1][start_col]);
/* Pass 1: empty. */
/* We leave the results scaled up by an overall factor of 8.
/* Pass 2: process columns.
* We leave the results scaled up by an overall factor of 8.
* We must also scale the output by (8/1)*(8/2) = 2**5.
*/
/* Even part */
tmp0 = GETJSAMPLE(sample_data[0][start_col]);
tmp1 = GETJSAMPLE(sample_data[1][start_col]);
/* Apply unsigned->signed conversion */
data[DCTSIZE*0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 5);
/* Odd part */
data[DCTSIZE*1] = (DCTELEM) ((tmp0 - tmp1) << 5);
}

View File

@ -2,7 +2,7 @@
* jidctint.c
*
* Copyright (C) 1991-1998, Thomas G. Lane.
* Modification developed 2002-2009 by Guido Vollbeding.
* Modification developed 2002-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -165,6 +165,8 @@
/*
* Perform dequantization and inverse DCT on one block of coefficients.
*
* cK represents sqrt(2) * cos(K*pi/16).
*/
GLOBAL(void)
@ -184,9 +186,10 @@ jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
int workspace[DCTSIZE2]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
/* Note results are scaled up by sqrt(8) compared to a true IDCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
/* Pass 1: process columns from input, store into work array.
* Note results are scaled up by sqrt(8) compared to a true IDCT;
* furthermore, we scale the results by 2**PASS1_BITS.
*/
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
@ -223,15 +226,16 @@ jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
continue;
}
/* Even part: reverse the even part of the forward DCT. */
/* The rotator is sqrt(2)*c(-6). */
/* Even part: reverse the even part of the forward DCT.
* The rotator is c(-6).
*/
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865);
tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065);
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
@ -260,21 +264,21 @@ jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
z2 = tmp0 + tmp2;
z3 = tmp1 + tmp3;
z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */
z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* c3 */
z2 = MULTIPLY(z2, - FIX_1_961570560); /* -c3-c5 */
z3 = MULTIPLY(z3, - FIX_0_390180644); /* -c3+c5 */
z2 += z1;
z3 += z1;
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* -c1+c3+c5-c7 */
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* c1+c3-c5-c7 */
tmp0 += z1 + z2;
tmp3 += z1 + z3;
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* c1+c3-c5+c7 */
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* c1+c3+c5-c7 */
tmp1 += z1 + z3;
tmp2 += z1 + z2;
@ -294,9 +298,10 @@ jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
wsptr++;
}
/* Pass 2: process rows from work array, store into output array. */
/* Note that we must descale the results by a factor of 8 == 2**3, */
/* and also undo the PASS1_BITS scaling. */
/* Pass 2: process rows from work array, store into output array.
* Note that we must descale the results by a factor of 8 == 2**3,
* and also undo the PASS1_BITS scaling.
*/
wsptr = workspace;
for (ctr = 0; ctr < DCTSIZE; ctr++) {
@ -330,15 +335,16 @@ jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
}
#endif
/* Even part: reverse the even part of the forward DCT. */
/* The rotator is sqrt(2)*c(-6). */
/* Even part: reverse the even part of the forward DCT.
* The rotator is c(-6).
*/
z2 = (INT32) wsptr[2];
z3 = (INT32) wsptr[6];
z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865);
tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065);
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
/* Add fudge factor here for final descale. */
z2 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
@ -364,21 +370,21 @@ jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
z2 = tmp0 + tmp2;
z3 = tmp1 + tmp3;
z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */
z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* c3 */
z2 = MULTIPLY(z2, - FIX_1_961570560); /* -c3-c5 */
z3 = MULTIPLY(z3, - FIX_0_390180644); /* -c3+c5 */
z2 += z1;
z3 += z1;
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* -c1+c3+c5-c7 */
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* c1+c3-c5-c7 */
tmp0 += z1 + z2;
tmp3 += z1 + z3;
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* c1+c3-c5+c7 */
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* c1+c3+c5-c7 */
tmp1 += z1 + z3;
tmp2 += z1 + z2;
@ -2835,9 +2841,11 @@ jpeg_idct_16x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
int workspace[8*8]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
/* Note results are scaled up by sqrt(8) compared to a true IDCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
/* Pass 1: process columns from input, store into work array.
* Note results are scaled up by sqrt(8) compared to a true IDCT;
* furthermore, we scale the results by 2**PASS1_BITS.
* 8-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
*/
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
@ -2874,15 +2882,16 @@ jpeg_idct_16x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
continue;
}
/* Even part: reverse the even part of the forward DCT. */
/* The rotator is sqrt(2)*c(-6). */
/* Even part: reverse the even part of the forward DCT.
* The rotator is c(-6).
*/
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865);
tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065);
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
@ -2911,21 +2920,21 @@ jpeg_idct_16x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
z2 = tmp0 + tmp2;
z3 = tmp1 + tmp3;
z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */
z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* c3 */
z2 = MULTIPLY(z2, - FIX_1_961570560); /* -c3-c5 */
z3 = MULTIPLY(z3, - FIX_0_390180644); /* -c3+c5 */
z2 += z1;
z3 += z1;
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* -c1+c3+c5-c7 */
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* c1+c3-c5-c7 */
tmp0 += z1 + z2;
tmp3 += z1 + z3;
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* c1+c3-c5+c7 */
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* c1+c3+c5-c7 */
tmp1 += z1 + z3;
tmp2 += z1 + z2;
@ -2948,6 +2957,7 @@ jpeg_idct_16x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
/* Pass 2: process 8 rows from work array, store into output array.
* 16-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/32).
*/
wsptr = workspace;
for (ctr = 0; ctr < 8; ctr++) {
outptr = output_buf[ctr] + output_col;
@ -3109,6 +3119,7 @@ jpeg_idct_14x7 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
/* Pass 1: process columns from input, store into work array.
* 7-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/14).
*/
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
@ -3164,6 +3175,7 @@ jpeg_idct_14x7 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
/* Pass 2: process 7 rows from work array, store into output array.
* 14-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/28).
*/
wsptr = workspace;
for (ctr = 0; ctr < 7; ctr++) {
outptr = output_buf[ctr] + output_col;
@ -3304,6 +3316,7 @@ jpeg_idct_12x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
/* Pass 1: process columns from input, store into work array.
* 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12).
*/
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
@ -3346,6 +3359,7 @@ jpeg_idct_12x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
/* Pass 2: process 6 rows from work array, store into output array.
* 12-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/24).
*/
wsptr = workspace;
for (ctr = 0; ctr < 6; ctr++) {
outptr = output_buf[ctr] + output_col;
@ -3480,6 +3494,7 @@ jpeg_idct_10x5 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
/* Pass 1: process columns from input, store into work array.
* 5-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/10).
*/
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
@ -3520,6 +3535,7 @@ jpeg_idct_10x5 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
/* Pass 2: process 5 rows from work array, store into output array.
* 10-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/20).
*/
wsptr = workspace;
for (ctr = 0; ctr < 5; ctr++) {
outptr = output_buf[ctr] + output_col;
@ -3639,8 +3655,10 @@ jpeg_idct_8x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array.
* 4-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
* 4-point IDCT kernel,
* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT].
*/
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
@ -3675,23 +3693,26 @@ jpeg_idct_8x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
wsptr[8*2] = (int) (tmp12 - tmp2);
}
/* Pass 2: process rows from work array, store into output array. */
/* Note that we must descale the results by a factor of 8 == 2**3, */
/* and also undo the PASS1_BITS scaling. */
/* Pass 2: process rows from work array, store into output array.
* Note that we must descale the results by a factor of 8 == 2**3,
* and also undo the PASS1_BITS scaling.
* 8-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
*/
wsptr = workspace;
for (ctr = 0; ctr < 4; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part: reverse the even part of the forward DCT. */
/* The rotator is sqrt(2)*c(-6). */
/* Even part: reverse the even part of the forward DCT.
* The rotator is c(-6).
*/
z2 = (INT32) wsptr[2];
z3 = (INT32) wsptr[6];
z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865);
tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065);
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
/* Add fudge factor here for final descale. */
z2 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
@ -3717,21 +3738,21 @@ jpeg_idct_8x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
z2 = tmp0 + tmp2;
z3 = tmp1 + tmp3;
z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */
z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* c3 */
z2 = MULTIPLY(z2, - FIX_1_961570560); /* -c3-c5 */
z3 = MULTIPLY(z3, - FIX_0_390180644); /* -c3+c5 */
z2 += z1;
z3 += z1;
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* -c1+c3+c5-c7 */
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* c1+c3-c5-c7 */
tmp0 += z1 + z2;
tmp3 += z1 + z3;
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* c1+c3-c5+c7 */
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* c1+c3+c5-c7 */
tmp1 += z1 + z3;
tmp2 += z1 + z2;
@ -3793,6 +3814,7 @@ jpeg_idct_6x3 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
/* Pass 1: process columns from input, store into work array.
* 3-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/6).
*/
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
@ -3823,6 +3845,7 @@ jpeg_idct_6x3 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
/* Pass 2: process 3 rows from work array, store into output array.
* 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12).
*/
wsptr = workspace;
for (ctr = 0; ctr < 3; ctr++) {
outptr = output_buf[ctr] + output_col;
@ -3924,6 +3947,7 @@ jpeg_idct_4x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
* 4-point IDCT kernel,
* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT].
*/
wsptr = workspace;
for (ctr = 0; ctr < 2; ctr++) {
outptr = output_buf[ctr] + output_col;
@ -3979,7 +4003,7 @@ jpeg_idct_2x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp0, tmp10;
INT32 tmp0, tmp1;
ISLOW_MULT_TYPE * quantptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
@ -3994,18 +4018,18 @@ jpeg_idct_2x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
/* Even part */
tmp10 = DEQUANTIZE(coef_block[0], quantptr[0]);
tmp0 = DEQUANTIZE(coef_block[0], quantptr[0]);
/* Add fudge factor here for final descale. */
tmp10 += ONE << 2;
tmp0 += ONE << 2;
/* Odd part */
tmp0 = DEQUANTIZE(coef_block[1], quantptr[1]);
tmp1 = DEQUANTIZE(coef_block[1], quantptr[1]);
/* Final output stage */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, 3) & RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, 3) & RANGE_MASK];
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp0 + tmp1, 3) & RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp0 - tmp1, 3) & RANGE_MASK];
}
@ -4036,6 +4060,7 @@ jpeg_idct_8x16 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
/* Pass 1: process columns from input, store into work array.
* 16-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/32).
*/
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
@ -4135,23 +4160,26 @@ jpeg_idct_8x16 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
wsptr[8*8] = (int) RIGHT_SHIFT(tmp27 - tmp13, CONST_BITS-PASS1_BITS);
}
/* Pass 2: process rows from work array, store into output array. */
/* Note that we must descale the results by a factor of 8 == 2**3, */
/* and also undo the PASS1_BITS scaling. */
/* Pass 2: process rows from work array, store into output array.
* Note that we must descale the results by a factor of 8 == 2**3,
* and also undo the PASS1_BITS scaling.
* 8-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
*/
wsptr = workspace;
for (ctr = 0; ctr < 16; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part: reverse the even part of the forward DCT. */
/* The rotator is sqrt(2)*c(-6). */
/* Even part: reverse the even part of the forward DCT.
* The rotator is c(-6).
*/
z2 = (INT32) wsptr[2];
z3 = (INT32) wsptr[6];
z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865);
tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065);
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
/* Add fudge factor here for final descale. */
z2 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2));
@ -4177,21 +4205,21 @@ jpeg_idct_8x16 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
z2 = tmp0 + tmp2;
z3 = tmp1 + tmp3;
z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */
z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* c3 */
z2 = MULTIPLY(z2, - FIX_1_961570560); /* -c3-c5 */
z3 = MULTIPLY(z3, - FIX_0_390180644); /* -c3+c5 */
z2 += z1;
z3 += z1;
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* -c1+c3+c5-c7 */
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* c1+c3-c5-c7 */
tmp0 += z1 + z2;
tmp3 += z1 + z3;
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* c1+c3-c5+c7 */
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* c1+c3+c5-c7 */
tmp1 += z1 + z3;
tmp2 += z1 + z2;
@ -4254,6 +4282,7 @@ jpeg_idct_7x14 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
/* Pass 1: process columns from input, store into work array.
* 14-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/28).
*/
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
@ -4341,6 +4370,7 @@ jpeg_idct_7x14 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
/* Pass 2: process 14 rows from work array, store into output array.
* 7-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/14).
*/
wsptr = workspace;
for (ctr = 0; ctr < 14; ctr++) {
outptr = output_buf[ctr] + output_col;
@ -4437,6 +4467,7 @@ jpeg_idct_6x12 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
/* Pass 1: process columns from input, store into work array.
* 12-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/24).
*/
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
@ -4520,6 +4551,7 @@ jpeg_idct_6x12 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
/* Pass 2: process 12 rows from work array, store into output array.
* 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12).
*/
wsptr = workspace;
for (ctr = 0; ctr < 12; ctr++) {
outptr = output_buf[ctr] + output_col;
@ -4601,6 +4633,7 @@ jpeg_idct_5x10 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
/* Pass 1: process columns from input, store into work array.
* 10-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/20).
*/
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
@ -4676,6 +4709,7 @@ jpeg_idct_5x10 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
/* Pass 2: process 10 rows from work array, store into output array.
* 5-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/10).
*/
wsptr = workspace;
for (ctr = 0; ctr < 10; ctr++) {
outptr = output_buf[ctr] + output_col;
@ -4750,9 +4784,11 @@ jpeg_idct_4x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
int workspace[4*8]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
/* Note results are scaled up by sqrt(8) compared to a true IDCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
/* Pass 1: process columns from input, store into work array.
* Note results are scaled up by sqrt(8) compared to a true IDCT;
* furthermore, we scale the results by 2**PASS1_BITS.
* 8-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
*/
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
@ -4789,15 +4825,16 @@ jpeg_idct_4x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
continue;
}
/* Even part: reverse the even part of the forward DCT. */
/* The rotator is sqrt(2)*c(-6). */
/* Even part: reverse the even part of the forward DCT.
* The rotator is c(-6).
*/
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865);
tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065);
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
@ -4826,21 +4863,21 @@ jpeg_idct_4x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
z2 = tmp0 + tmp2;
z3 = tmp1 + tmp3;
z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */
z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* c3 */
z2 = MULTIPLY(z2, - FIX_1_961570560); /* -c3-c5 */
z3 = MULTIPLY(z3, - FIX_0_390180644); /* -c3+c5 */
z2 += z1;
z3 += z1;
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* -c1+c3+c5-c7 */
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* c1+c3-c5-c7 */
tmp0 += z1 + z2;
tmp3 += z1 + z3;
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* c1+c3-c5+c7 */
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* c1+c3+c5-c7 */
tmp1 += z1 + z3;
tmp2 += z1 + z2;
@ -4861,8 +4898,10 @@ jpeg_idct_4x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
}
/* Pass 2: process 8 rows from work array, store into output array.
* 4-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
* 4-point IDCT kernel,
* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT].
*/
wsptr = workspace;
for (ctr = 0; ctr < 8; ctr++) {
outptr = output_buf[ctr] + output_col;
@ -4932,6 +4971,7 @@ jpeg_idct_3x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
/* Pass 1: process columns from input, store into work array.
* 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12).
*/
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
@ -4974,6 +5014,7 @@ jpeg_idct_3x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
/* Pass 2: process 6 rows from work array, store into output array.
* 3-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/6).
*/
wsptr = workspace;
for (ctr = 0; ctr < 6; ctr++) {
outptr = output_buf[ctr] + output_col;
@ -5037,6 +5078,7 @@ jpeg_idct_2x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
* 4-point IDCT kernel,
* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT].
*/
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
@ -5106,7 +5148,7 @@ jpeg_idct_1x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp0, tmp10;
INT32 tmp0, tmp1;
ISLOW_MULT_TYPE * quantptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
SHIFT_TEMPS
@ -5117,19 +5159,19 @@ jpeg_idct_1x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
/* Even part */
tmp10 = DEQUANTIZE(coef_block[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp0 = DEQUANTIZE(coef_block[DCTSIZE*0], quantptr[DCTSIZE*0]);
/* Add fudge factor here for final descale. */
tmp10 += ONE << 2;
tmp0 += ONE << 2;
/* Odd part */
tmp0 = DEQUANTIZE(coef_block[DCTSIZE*1], quantptr[DCTSIZE*1]);
tmp1 = DEQUANTIZE(coef_block[DCTSIZE*1], quantptr[DCTSIZE*1]);
/* Final output stage */
output_buf[0][output_col] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, 3)
output_buf[0][output_col] = range_limit[(int) RIGHT_SHIFT(tmp0 + tmp1, 3)
& RANGE_MASK];
output_buf[1][output_col] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, 3)
output_buf[1][output_col] = range_limit[(int) RIGHT_SHIFT(tmp0 - tmp1, 3)
& RANGE_MASK];
}

View File

@ -2,7 +2,7 @@
* jmorecfg.h
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* Modified 1997-2012 by Guido Vollbeding.
* Modified 1997-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -15,13 +15,22 @@
/*
* Define BITS_IN_JSAMPLE as either
* 8 for 8-bit sample values (the usual setting)
* 9 for 9-bit sample values
* 10 for 10-bit sample values
* 11 for 11-bit sample values
* 12 for 12-bit sample values
* Only 8 and 12 are legal data precisions for lossy JPEG according to the
* JPEG standard, and the IJG code does not support anything else!
* We do not support run-time selection of data precision, sorry.
* Only 8, 9, 10, 11, and 12 bits sample data precision are supported for
* full-feature DCT processing. Further depths up to 16-bit may be added
* later for the lossless modes of operation.
* Run-time selection and conversion of data precision will be added later
* and are currently not supported, sorry.
* Exception: The transcoding part (jpegtran) supports all settings in a
* single instance, since it operates on the level of DCT coefficients and
* not sample values. The DCT coefficients are of the same type (16 bits)
* in all cases (see below).
*/
#define BITS_IN_JSAMPLE 8 /* use 8 or 12 */
#define BITS_IN_JSAMPLE 8 /* use 8, 9, 10, 11, or 12 */
/*
@ -77,6 +86,48 @@ typedef char JSAMPLE;
#endif /* BITS_IN_JSAMPLE == 8 */
#if BITS_IN_JSAMPLE == 9
/* JSAMPLE should be the smallest type that will hold the values 0..511.
* On nearly all machines "short" will do nicely.
*/
typedef short JSAMPLE;
#define GETJSAMPLE(value) ((int) (value))
#define MAXJSAMPLE 511
#define CENTERJSAMPLE 256
#endif /* BITS_IN_JSAMPLE == 9 */
#if BITS_IN_JSAMPLE == 10
/* JSAMPLE should be the smallest type that will hold the values 0..1023.
* On nearly all machines "short" will do nicely.
*/
typedef short JSAMPLE;
#define GETJSAMPLE(value) ((int) (value))
#define MAXJSAMPLE 1023
#define CENTERJSAMPLE 512
#endif /* BITS_IN_JSAMPLE == 10 */
#if BITS_IN_JSAMPLE == 11
/* JSAMPLE should be the smallest type that will hold the values 0..2047.
* On nearly all machines "short" will do nicely.
*/
typedef short JSAMPLE;
#define GETJSAMPLE(value) ((int) (value))
#define MAXJSAMPLE 2047
#define CENTERJSAMPLE 1024
#endif /* BITS_IN_JSAMPLE == 11 */
#if BITS_IN_JSAMPLE == 12
/* JSAMPLE should be the smallest type that will hold the values 0..4095.
* On nearly all machines "short" will do nicely.
@ -252,7 +303,10 @@ typedef void noreturn_t;
* Defining HAVE_BOOLEAN before including jpeglib.h should make it work.
*/
#ifdef HAVE_BOOLEAN
#ifndef HAVE_BOOLEAN
#if defined FALSE || defined TRUE || defined QGLOBAL_H
/* Qt3 defines FALSE and TRUE as "const" variables in qglobal.h */
typedef int boolean;
#ifndef FALSE /* in case these macros already exist */
#define FALSE 0 /* values of boolean */
#endif
@ -262,6 +316,7 @@ typedef void noreturn_t;
#else
typedef enum { FALSE = 0, TRUE = 1 } boolean;
#endif
#endif
/*
@ -299,11 +354,12 @@ typedef enum { FALSE = 0, TRUE = 1 } boolean;
#define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
#define DCT_SCALING_SUPPORTED /* Input rescaling via DCT? (Requires DCT_ISLOW)*/
#define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */
/* Note: if you selected 12-bit data precision, it is dangerous to turn off
* ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only good for 8-bit
* precision, so jchuff.c normally uses entropy optimization to compute
* usable tables for higher precision. If you don't want to do optimization,
* you'll have to supply different default Huffman tables.
/* Note: if you selected more than 8-bit data precision, it is dangerous to
* turn off ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only
* good for 8-bit precision, so arithmetic coding is recommended for higher
* precision. The Huffman encoder normally uses entropy optimization to
* compute usable tables for higher precision. Otherwise, you'll have to
* supply different default Huffman tables.
* The exact same statements apply for progressive JPEG: the default tables
* don't work for progressive mode. (This may get fixed, however.)
*/
@ -314,7 +370,7 @@ typedef enum { FALSE = 0, TRUE = 1 } boolean;
#define D_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
#define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
#define D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
#define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? */
#define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? (Requires DCT_ISLOW)*/
#define SAVE_MARKERS_SUPPORTED /* jpeg_save_markers() needed? */
#define BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */
#undef UPSAMPLE_SCALING_SUPPORTED /* Output rescaling at upsample stage? */

View File

@ -2,7 +2,7 @@
* jpegint.h
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* Modified 1997-2011 by Guido Vollbeding.
* Modified 1997-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -211,8 +211,8 @@ struct jpeg_marker_reader {
/* Entropy decoding */
struct jpeg_entropy_decoder {
JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
JMETHOD(boolean, decode_mcu, (j_decompress_ptr cinfo,
JBLOCKROW *MCU_data));
JMETHOD(boolean, decode_mcu, (j_decompress_ptr cinfo, JBLOCKROW *MCU_data));
JMETHOD(void, finish_pass, (j_decompress_ptr cinfo));
};
/* Inverse DCT (also performs dequantization) */

View File

@ -2,7 +2,7 @@
* jpeglib.h
*
* Copyright (C) 1991-1998, Thomas G. Lane.
* Modified 2002-2012 by Guido Vollbeding.
* Modified 2002-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -39,12 +39,12 @@ extern "C" {
#define JPEG_LIB_VERSION 90 /* Compatibility version 9.0 */
#define JPEG_LIB_VERSION_MAJOR 9
#define JPEG_LIB_VERSION_MINOR 0
#define JPEG_LIB_VERSION_MINOR 1
/* Various constants determining the sizes of things.
* All of these are specified by the JPEG standard, so don't change them
* if you want to be compatible.
* All of these are specified by the JPEG standard,
* so don't change them if you want to be compatible.
*/
#define DCTSIZE 8 /* The basic DCT block is 8x8 coefficients */
@ -157,16 +157,21 @@ typedef struct {
/* The downsampled dimensions are the component's actual, unpadded number
* of samples at the main buffer (preprocessing/compression interface);
* DCT scaling is included, so
* downsampled_width = ceil(image_width * Hi/Hmax * DCT_h_scaled_size/DCTSIZE)
* downsampled_width =
* ceil(image_width * Hi/Hmax * DCT_h_scaled_size/block_size)
* and similarly for height.
*/
JDIMENSION downsampled_width; /* actual width in samples */
JDIMENSION downsampled_height; /* actual height in samples */
/* This flag is used only for decompression. In cases where some of the
* components will be ignored (eg grayscale output from YCbCr image),
* we can skip most computations for the unused components.
/* For decompression, in cases where some of the components will be
* ignored (eg grayscale output from YCbCr image), we can skip most
* computations for the unused components.
* For compression, some of the components will need further quantization
* scale by factor of 2 after DCT (eg BG_YCC output from normal RGB input).
* The field is first set TRUE for decompression, FALSE for compression
* in initial_setup, and then adapted in color conversion setup.
*/
boolean component_needed; /* do we need the value of this component? */
boolean component_needed;
/* These values are computed before starting a scan of the component. */
/* The decompressor output side may not use these variables. */
@ -215,10 +220,12 @@ struct jpeg_marker_struct {
typedef enum {
JCS_UNKNOWN, /* error/unspecified */
JCS_GRAYSCALE, /* monochrome */
JCS_RGB, /* red/green/blue */
JCS_YCbCr, /* Y/Cb/Cr (also known as YUV) */
JCS_RGB, /* red/green/blue, standard RGB (sRGB) */
JCS_YCbCr, /* Y/Cb/Cr (also known as YUV), standard YCC */
JCS_CMYK, /* C/M/Y/K */
JCS_YCCK /* Y/Cb/Cr/K */
JCS_YCCK, /* Y/Cb/Cr/K */
JCS_BG_RGB, /* big gamut red/green/blue, bg-sRGB */
JCS_BG_YCC /* big gamut Y/Cb/Cr, bg-sYCC */
} J_COLOR_SPACE;
/* Supported color transforms. */

View File

@ -1,4 +1,4 @@
.TH JPEGTRAN 1 "28 December 2009"
.TH JPEGTRAN 1 "13 September 2013"
.SH NAME
jpegtran \- lossless transformation of JPEG files
.SH SYNOPSIS
@ -156,15 +156,23 @@ image region but losslessly preserves what is inside. Like the rotate and
flip transforms, lossless crop is restricted by the current JPEG format: the
upper left corner of the selected region must fall on an iMCU boundary. If
this does not hold for the given crop parameters, we silently move the upper
left corner up and/or left to make it so, simultaneously increasing the region
dimensions to keep the lower right crop corner unchanged. (Thus, the output
image covers at least the requested region, but may cover more.)
left corner up and/or left to make it so, simultaneously increasing the
region dimensions to keep the lower right crop corner unchanged. (Thus, the
output image covers at least the requested region, but may cover more.)
The adjustment of the region dimensions may be optionally disabled.
The image can be losslessly cropped by giving the switch:
.TP
.B \-crop WxH+X+Y
Crop to a rectangular subarea of width W, height H starting at point X,Y.
.PP
A complementary lossless-wipe option is provided to discard (gray out) data
inside a given image region while losslessly preserving what is outside:
.TP
.B \-wipe WxH+X+Y
Wipe (gray out) a rectangular subarea of width W, height H starting at point
X,Y.
.PP
Other not-strictly-lossless transformation switches are:
.TP
.B \-grayscale

View File

@ -1,7 +1,7 @@
/*
* jpegtran.c
*
* Copyright (C) 1995-2012, Thomas G. Lane, Guido Vollbeding.
* Copyright (C) 1995-2013, Thomas G. Lane, Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -66,8 +66,8 @@ usage (void)
fprintf(stderr, "Switches for modifying the image:\n");
#if TRANSFORMS_SUPPORTED
fprintf(stderr, " -crop WxH+X+Y Crop to a rectangular subarea\n");
fprintf(stderr, " -grayscale Reduce to grayscale (omit color data)\n");
fprintf(stderr, " -flip [horizontal|vertical] Mirror image (left-right or top-bottom)\n");
fprintf(stderr, " -grayscale Reduce to grayscale (omit color data)\n");
fprintf(stderr, " -perfect Fail if there is non-transformable edge blocks\n");
fprintf(stderr, " -rotate [90|180|270] Rotate image (degrees clockwise)\n");
#endif
@ -76,6 +76,7 @@ usage (void)
fprintf(stderr, " -transpose Transpose image\n");
fprintf(stderr, " -transverse Transverse transpose image\n");
fprintf(stderr, " -trim Drop non-transformable edge blocks\n");
fprintf(stderr, " -wipe WxH+X+Y Wipe (gray out) a rectangular subarea\n");
#endif
fprintf(stderr, "Switches for advanced users:\n");
#ifdef C_ARITH_CODING_SUPPORTED
@ -187,7 +188,8 @@ parse_switches (j_compress_ptr cinfo, int argc, char **argv,
#if TRANSFORMS_SUPPORTED
if (++argn >= argc) /* advance to next argument */
usage();
if (! jtransform_parse_crop_spec(&transformoption, argv[argn])) {
if (transformoption.crop /* reject multiple crop/wipe requests */ ||
! jtransform_parse_crop_spec(&transformoption, argv[argn])) {
fprintf(stderr, "%s: bogus -crop argument '%s'\n",
progname, argv[argn]);
exit(EXIT_FAILURE);
@ -336,6 +338,21 @@ parse_switches (j_compress_ptr cinfo, int argc, char **argv,
/* Trim off any partial edge MCUs that the transform can't handle. */
transformoption.trim = TRUE;
} else if (keymatch(arg, "wipe", 1)) {
#if TRANSFORMS_SUPPORTED
if (++argn >= argc) /* advance to next argument */
usage();
if (transformoption.crop /* reject multiple crop/wipe requests */ ||
! jtransform_parse_crop_spec(&transformoption, argv[argn])) {
fprintf(stderr, "%s: bogus -wipe argument '%s'\n",
progname, argv[argn]);
exit(EXIT_FAILURE);
}
select_transform(JXFORM_WIPE);
#else
select_transform(JXFORM_NONE); /* force an error */
#endif
} else {
usage(); /* bogus switch */
}

View File

@ -1,7 +1,7 @@
/*
* jversion.h
*
* Copyright (C) 1991-2013, Thomas G. Lane, Guido Vollbeding.
* Copyright (C) 1991-2014, Thomas G. Lane, Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -9,6 +9,6 @@
*/
#define JVERSION "9 13-Jan-2013"
#define JVERSION "9a 19-Jan-2014"
#define JCOPYRIGHT "Copyright (C) 2013, Thomas G. Lane, Guido Vollbeding"
#define JCOPYRIGHT "Copyright (C) 2014, Thomas G. Lane, Guido Vollbeding"

View File

@ -95,8 +95,8 @@ use.) Unsupported ISO options include:
* Lossless JPEG
* DNL marker
* Nonintegral subsampling ratios
We support both 8- and 12-bit data precision, but this is a compile-time
choice rather than a run-time choice; hence it is difficult to use both
We support 8-bit to 12-bit data precision, but this is a compile-time choice
rather than a run-time choice; hence it is difficult to use different
precisions in a single application.
By itself, the library handles only interchange JPEG datastreams --- in
@ -225,7 +225,7 @@ For best results, source data values should have the precision specified by
BITS_IN_JSAMPLE (normally 8 bits). For instance, if you choose to compress
data that's only 6 bits/channel, you should left-justify each value in a
byte before passing it to the compressor. If you need to compress data
that has more than 8 bits/channel, compile with BITS_IN_JSAMPLE = 12.
that has more than 8 bits/channel, compile with BITS_IN_JSAMPLE = 9 to 12.
(See "Library compile-time options", later.)
@ -1273,9 +1273,10 @@ Special color spaces
The JPEG standard itself is "color blind" and doesn't specify any particular
color space. It is customary to convert color data to a luminance/chrominance
color space before compressing, since this permits greater compression. The
existing de-facto JPEG file format standards specify YCbCr or grayscale data
(JFIF), or grayscale, RGB, YCbCr, CMYK, or YCCK (Adobe). For special
applications such as multispectral images, other color spaces can be used,
existing JPEG file interchange format standards specify YCbCr or GRAYSCALE
data (JFIF version 1), GRAYSCALE, RGB, YCbCr, CMYK, or YCCK (Adobe), or BG_RGB
or BG_YCC (big gamut color spaces, JFIF version 2). For special applications
such as multispectral images, other color spaces can be used,
but it must be understood that such files will be unportable.
The JPEG library can handle the most common colorspace conversions (namely
@ -1292,22 +1293,25 @@ jpeg_set_colorspace(). Of course you must select a supported transformation.
jccolor.c currently supports the following transformations:
RGB => YCbCr
RGB => GRAYSCALE
RGB => BG_YCC
YCbCr => GRAYSCALE
YCbCr => BG_YCC
CMYK => YCCK
plus the null transforms: GRAYSCALE => GRAYSCALE, RGB => RGB,
YCbCr => YCbCr, CMYK => CMYK, YCCK => YCCK, and UNKNOWN => UNKNOWN.
BG_RGB => BG_RGB, YCbCr => YCbCr, BG_YCC => BG_YCC, CMYK => CMYK,
YCCK => YCCK, and UNKNOWN => UNKNOWN.
The de-facto file format standards (JFIF and Adobe) specify APPn markers that
indicate the color space of the JPEG file. It is important to ensure that
these are written correctly, or omitted if the JPEG file's color space is not
one of the ones supported by the de-facto standards. jpeg_set_colorspace()
will set the compression parameters to include or omit the APPn markers
properly, so long as it is told the truth about the JPEG color space.
For example, if you are writing some random 3-component color space without
conversion, don't try to fake out the library by setting in_color_space and
jpeg_color_space to JCS_YCbCr; use JCS_UNKNOWN. You may want to write an
APPn marker of your own devising to identify the colorspace --- see "Special
markers", below.
The file interchange format standards (JFIF and Adobe) specify APPn markers
that indicate the color space of the JPEG file. It is important to ensure
that these are written correctly, or omitted if the JPEG file's color space
is not one of the ones supported by the interchange standards.
jpeg_set_colorspace() will set the compression parameters to include or omit
the APPn markers properly, so long as it is told the truth about the JPEG
color space. For example, if you are writing some random 3-component color
space without conversion, don't try to fake out the library by setting
in_color_space and jpeg_color_space to JCS_YCbCr; use JCS_UNKNOWN.
You may want to write an APPn marker of your own devising to identify
the colorspace --- see "Special markers", below.
When told that the color space is UNKNOWN, the library will default to using
luminance-quality compression parameters for all color components. You may
@ -1325,6 +1329,8 @@ set out_color_space to override this. Again, you must select a supported
transformation. jdcolor.c currently supports
YCbCr => RGB
YCbCr => GRAYSCALE
BG_YCC => RGB
BG_YCC => GRAYSCALE
RGB => GRAYSCALE
GRAYSCALE => RGB
YCCK => CMYK
@ -2585,10 +2591,10 @@ different sizes. If the image dimensions are not a multiple of the MCU size,
you must also pad the data correctly (usually, this is done by replicating
the last column and/or row). The data must be padded to a multiple of a DCT
block in each component: that is, each downsampled row must contain a
multiple of 8 valid samples, and there must be a multiple of 8 sample rows
for each component. (For applications such as conversion of digital TV
images, the standard image size is usually a multiple of the DCT block size,
so that no padding need actually be done.)
multiple of block_size valid samples, and there must be a multiple of
block_size sample rows for each component. (For applications such as
conversion of digital TV images, the standard image size is usually a
multiple of the DCT block size, so that no padding need actually be done.)
The procedure for compression of raw data is basically the same as normal
compression, except that you call jpeg_write_raw_data() in place of
@ -2614,22 +2620,22 @@ The scanlines count passed to and returned from jpeg_write_raw_data is
measured in terms of the component with the largest v_samp_factor.
jpeg_write_raw_data() processes one MCU row per call, which is to say
v_samp_factor*DCTSIZE sample rows of each component. The passed num_lines
value must be at least max_v_samp_factor*DCTSIZE, and the return value will
be exactly that amount (or possibly some multiple of that amount, in future
library versions). This is true even on the last call at the bottom of the
image; don't forget to pad your data as necessary.
v_samp_factor*block_size sample rows of each component. The passed num_lines
value must be at least max_v_samp_factor*block_size, and the return value
will be exactly that amount (or possibly some multiple of that amount, in
future library versions). This is true even on the last call at the bottom
of the image; don't forget to pad your data as necessary.
The required dimensions of the supplied data can be computed for each
component as
cinfo->comp_info[i].width_in_blocks*DCTSIZE samples per row
cinfo->comp_info[i].height_in_blocks*DCTSIZE rows in image
cinfo->comp_info[i].width_in_blocks*block_size samples per row
cinfo->comp_info[i].height_in_blocks*block_size rows in image
after jpeg_start_compress() has initialized those fields. If the valid data
is smaller than this, it must be padded appropriately. For some sampling
factors and image sizes, additional dummy DCT blocks are inserted to make
the image a multiple of the MCU dimensions. The library creates such dummy
blocks itself; it does not read them from your supplied data. Therefore you
need never pad by more than DCTSIZE samples. An example may help here.
need never pad by more than block_size samples. An example may help here.
Assume 2h2v downsampling of YCbCr data, that is
cinfo->comp_info[0].h_samp_factor = 2 for Y
cinfo->comp_info[0].v_samp_factor = 2
@ -2671,8 +2677,8 @@ Then call jpeg_read_raw_data() in place of jpeg_read_scanlines(). The
decompression process is otherwise the same as usual.
jpeg_read_raw_data() returns one MCU row per call, and thus you must pass a
buffer of at least max_v_samp_factor*DCTSIZE scanlines (scanline counting is
the same as for raw-data compression). The buffer you pass must be large
buffer of at least max_v_samp_factor*block_size scanlines (scanline counting
is the same as for raw-data compression). The buffer you pass must be large
enough to hold the actual data plus padding to DCT-block boundaries. As with
compression, any entirely dummy DCT blocks are not processed so you need not
allocate space for them, but the total scanline count includes them. The
@ -2928,10 +2934,10 @@ This does not count any memory allocated by the application, such as a
buffer to hold the final output image.
The above figures are valid for 8-bit JPEG data precision and a machine with
32-bit ints. For 12-bit JPEG data, double the size of the strip buffers and
quantization pixel buffer. The "fixed-size" data will be somewhat smaller
with 16-bit ints, larger with 64-bit ints. Also, CMYK or other unusual
color spaces will require different amounts of space.
32-bit ints. For 9-bit to 12-bit JPEG data, double the size of the strip
buffers and quantization pixel buffer. The "fixed-size" data will be
somewhat smaller with 16-bit ints, larger with 64-bit ints. Also, CMYK
or other unusual color spaces will require different amounts of space.
The full-image coefficient and pixel buffers, if needed at all, do not
have to be fully RAM resident; you can have the library use temporary
@ -2953,27 +2959,34 @@ Library compile-time options
A number of compile-time options are available by modifying jmorecfg.h.
The JPEG standard provides for both the baseline 8-bit DCT process and
a 12-bit DCT process. The IJG code supports 12-bit JPEG if you define
BITS_IN_JSAMPLE as 12 rather than 8. Note that this causes JSAMPLE to be
larger than a char, so it affects the surrounding application's image data.
The sample applications cjpeg and djpeg can support 12-bit mode only for PPM
and GIF file formats; you must disable the other file formats to compile a
12-bit cjpeg or djpeg. (install.txt has more information about that.)
At present, a 12-bit library can handle *only* 12-bit images, not both
precisions. (If you need to include both 8- and 12-bit libraries in a single
application, you could probably do it by defining NEED_SHORT_EXTERNAL_NAMES
for just one of the copies. You'd have to access the 8-bit and 12-bit copies
from separate application source files. This is untested ... if you try it,
we'd like to hear whether it works!)
The IJG code currently supports 8-bit to 12-bit sample data precision by
defining BITS_IN_JSAMPLE as 8, 9, 10, 11, or 12.
Note that a value larger than 8 causes JSAMPLE to be larger than a char,
so it affects the surrounding application's image data.
The sample applications cjpeg and djpeg can support deeper than 8-bit data
only for PPM and GIF file formats; you must disable the other file formats
to compile a 9-bit to 12-bit cjpeg or djpeg. (install.txt has more
information about that.)
Run-time selection and conversion of data precision are currently not
supported and may be added later.
Exception: The transcoding part (jpegtran) supports all settings in a
single instance, since it operates on the level of DCT coefficients and
not sample values.
(If you need to include an 8-bit library and a 9-bit to 12-bit library for
compression or decompression in a single application, you could probably do
it by defining NEED_SHORT_EXTERNAL_NAMES for just one of the copies. You'd
have to access the 8-bit and the 9-bit to 12-bit copies from separate
application source files. This is untested ... if you try it, we'd like to
hear whether it works!)
Note that a 12-bit library always compresses in Huffman optimization mode,
in order to generate valid Huffman tables. This is necessary because our
default Huffman tables only cover 8-bit data. If you need to output 12-bit
files in one pass, you'll have to supply suitable default Huffman tables.
You may also want to supply your own DCT quantization tables; the existing
quality-scaling code has been developed for 8-bit use, and probably doesn't
generate especially good tables for 12-bit.
Note that the standard Huffman tables are only valid for 8-bit data precision.
If you selected more than 8-bit data precision, cjpeg uses arithmetic coding
by default. The Huffman encoder normally uses entropy optimization to
compute usable tables for higher precision. Otherwise, you'll have to
supply different default Huffman tables. You may also want to supply your
own DCT quantization tables; the existing quality-scaling code has been
developed for 8-bit use, and probably doesn't generate especially good tables
for 9-bit to 12-bit.
The maximum number of components (color channels) in the image is determined
by MAX_COMPONENTS. The JPEG standard allows up to 255 components, but we

View File

@ -1,7 +1,7 @@
#! /bin/sh
# Common wrapper for a few potentially missing GNU programs.
scriptversion=2012-06-26.16; # UTC
scriptversion=2013-10-28.13; # UTC
# Copyright (C) 1996-2013 Free Software Foundation, Inc.
# Originally written by Fran,cois Pinard <pinard@iro.umontreal.ca>, 1996.
@ -160,7 +160,7 @@ give_advice ()
;;
autom4te*)
echo "You might have modified some maintainer files that require"
echo "the 'automa4te' program to be rebuilt."
echo "the 'autom4te' program to be rebuilt."
program_details 'autom4te'
;;
bison*|yacc*)

View File

@ -1,4 +1,4 @@
.TH RDJPGCOM 1 "02 April 2009"
.TH RDJPGCOM 1 "13 September 2013"
.SH NAME
rdjpgcom \- display text comments from a JPEG file
.SH SYNOPSIS

View File

@ -1,6 +1,6 @@
IJG JPEG LIBRARY: SYSTEM ARCHITECTURE
Copyright (C) 1991-2012, Thomas G. Lane, Guido Vollbeding.
Copyright (C) 1991-2013, Thomas G. Lane, Guido Vollbeding.
This file is part of the Independent JPEG Group's software.
For conditions of distribution and use, see the accompanying README file.
@ -170,16 +170,16 @@ can be simplified a little if they work on padded data: it's not necessary to
have special cases at the right and bottom edges. Therefore the interface
buffer is always an integral number of blocks wide and high, and we expect
compression preprocessing to pad the source data properly. Padding will occur
only to the next block (N-sample) boundary. In an interleaved-scan situation,
additional dummy blocks may be used to fill out MCUs, but the MCU assembly and
disassembly logic will create or discard these blocks internally. (This is
advantageous for speed reasons, since we avoid DCTing the dummy blocks.
It also permits a small reduction in file size, because the compressor can
choose dummy block contents so as to minimize their size in compressed form.
Finally, it makes the interface buffer specification independent of whether
the file is actually interleaved or not.) Applications that wish to deal
directly with the downsampled data must provide similar buffering and padding
for odd-sized images.
only to the next block (block_size-sample) boundary. In an interleaved-scan
situation, additional dummy blocks may be used to fill out MCUs, but the MCU
assembly and disassembly logic will create or discard these blocks internally.
(This is advantageous for speed reasons, since we avoid DCTing the dummy
blocks. It also permits a small reduction in file size, because the
compressor can choose dummy block contents so as to minimize their size
in compressed form. Finally, it makes the interface buffer specification
independent of whether the file is actually interleaved or not.)
Applications that wish to deal directly with the downsampled data must
provide similar buffering and padding for odd-sized images.
*** Poor man's object-oriented programming ***
@ -345,9 +345,10 @@ The objects shown above are:
require context rows above and below the current row group; the
preprocessing controller is responsible for supplying these rows via proper
buffering. The downsampler is responsible for edge expansion at the right
edge (i.e., extending each sample row to a multiple of N samples); but the
preprocessing controller is responsible for vertical edge expansion (i.e.,
duplicating the bottom sample row as needed to make a multiple of N rows).
edge (i.e., extending each sample row to a multiple of block_size samples);
but the preprocessing controller is responsible for vertical edge expansion
(i.e., duplicating the bottom sample row as needed to make a multiple of
block_size rows).
* Coefficient controller: buffer controller for the DCT-coefficient data.
This controller handles MCU assembly, including insertion of dummy DCT
@ -651,8 +652,8 @@ contain quantized coefficients everywhere outside the DCT/IDCT subsystems.
quantization a la JPEG Part 3.)
Notice that the allocation unit is now a row of 8x8 coefficient blocks,
corresponding to N rows of samples. Otherwise the structure is much the same
as for samples, and for the same reasons.
corresponding to block_size rows of samples. Otherwise the structure
is much the same as for samples, and for the same reasons.
On machines where malloc() can't handle a request bigger than 64Kb, this data
structure limits us to rows of less than 512 JBLOCKs, or a picture width of

Binary file not shown.

Before

Width:  |  Height:  |  Size: 34 KiB

After

Width:  |  Height:  |  Size: 34 KiB

File diff suppressed because one or more lines are too long

View File

@ -1,7 +1,7 @@
/*
* transupp.c
*
* Copyright (C) 1997-2012, Thomas G. Lane, Guido Vollbeding.
* Copyright (C) 1997-2013, Thomas G. Lane, Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -113,6 +113,116 @@ do_crop (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
}
LOCAL(void)
do_crop_ext (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
jvirt_barray_ptr *src_coef_arrays,
jvirt_barray_ptr *dst_coef_arrays)
/* Crop. This is only used when no rotate/flip is requested with the crop.
* Extension: If the destination size is larger than the source, we fill in
* the extra area with zero (neutral gray). Note we also have to zero partial
* iMCUs at the right and bottom edge of the source image area in this case.
*/
{
JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height;
JDIMENSION dst_blk_y, x_crop_blocks, y_crop_blocks;
int ci, offset_y;
JBLOCKARRAY src_buffer, dst_buffer;
jpeg_component_info *compptr;
MCU_cols = srcinfo->output_width /
(dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size);
MCU_rows = srcinfo->output_height /
(dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size);
for (ci = 0; ci < dstinfo->num_components; ci++) {
compptr = dstinfo->comp_info + ci;
comp_width = MCU_cols * compptr->h_samp_factor;
comp_height = MCU_rows * compptr->v_samp_factor;
x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
dst_blk_y += compptr->v_samp_factor) {
dst_buffer = (*srcinfo->mem->access_virt_barray)
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
(JDIMENSION) compptr->v_samp_factor, TRUE);
if (dstinfo->jpeg_height > srcinfo->output_height) {
if (dst_blk_y < y_crop_blocks ||
dst_blk_y >= comp_height + y_crop_blocks) {
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
FMEMZERO(dst_buffer[offset_y],
compptr->width_in_blocks * SIZEOF(JBLOCK));
}
continue;
}
src_buffer = (*srcinfo->mem->access_virt_barray)
((j_common_ptr) srcinfo, src_coef_arrays[ci],
dst_blk_y - y_crop_blocks,
(JDIMENSION) compptr->v_samp_factor, FALSE);
} else {
src_buffer = (*srcinfo->mem->access_virt_barray)
((j_common_ptr) srcinfo, src_coef_arrays[ci],
dst_blk_y + y_crop_blocks,
(JDIMENSION) compptr->v_samp_factor, FALSE);
}
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
if (dstinfo->jpeg_width > srcinfo->output_width) {
if (x_crop_blocks > 0) {
FMEMZERO(dst_buffer[offset_y],
x_crop_blocks * SIZEOF(JBLOCK));
}
jcopy_block_row(src_buffer[offset_y],
dst_buffer[offset_y] + x_crop_blocks,
comp_width);
if (compptr->width_in_blocks > comp_width + x_crop_blocks) {
FMEMZERO(dst_buffer[offset_y] +
comp_width + x_crop_blocks,
(compptr->width_in_blocks -
comp_width - x_crop_blocks) * SIZEOF(JBLOCK));
}
} else {
jcopy_block_row(src_buffer[offset_y] + x_crop_blocks,
dst_buffer[offset_y],
compptr->width_in_blocks);
}
}
}
}
}
LOCAL(void)
do_wipe (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
jvirt_barray_ptr *src_coef_arrays,
JDIMENSION drop_width, JDIMENSION drop_height)
/* Wipe - drop content of specified area, fill with zero (neutral gray) */
{
JDIMENSION comp_width, comp_height;
JDIMENSION blk_y, x_wipe_blocks, y_wipe_blocks;
int ci, offset_y;
JBLOCKARRAY buffer;
jpeg_component_info *compptr;
for (ci = 0; ci < dstinfo->num_components; ci++) {
compptr = dstinfo->comp_info + ci;
comp_width = drop_width * compptr->h_samp_factor;
comp_height = drop_height * compptr->v_samp_factor;
x_wipe_blocks = x_crop_offset * compptr->h_samp_factor;
y_wipe_blocks = y_crop_offset * compptr->v_samp_factor;
for (blk_y = 0; blk_y < comp_height; blk_y += compptr->v_samp_factor) {
buffer = (*srcinfo->mem->access_virt_barray)
((j_common_ptr) srcinfo, src_coef_arrays[ci], blk_y + y_wipe_blocks,
(JDIMENSION) compptr->v_samp_factor, TRUE);
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
FMEMZERO(buffer[offset_y] + x_wipe_blocks,
comp_width * SIZEOF(JBLOCK));
}
}
}
}
LOCAL(void)
do_flip_h_no_crop (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
JDIMENSION x_crop_offset,
@ -888,7 +998,8 @@ jtransform_request_workspace (j_decompress_ptr srcinfo,
/* Determine number of components in output image */
if (info->force_grayscale &&
srcinfo->jpeg_color_space == JCS_YCbCr &&
(srcinfo->jpeg_color_space == JCS_YCbCr ||
srcinfo->jpeg_color_space == JCS_BG_YCC) &&
srcinfo->num_components == 3)
/* We'll only process the first component */
info->num_components = 1;
@ -965,39 +1076,81 @@ jtransform_request_workspace (j_decompress_ptr srcinfo,
info->crop_xoffset = 0; /* default to +0 */
if (info->crop_yoffset_set == JCROP_UNSET)
info->crop_yoffset = 0; /* default to +0 */
if (info->crop_xoffset >= info->output_width ||
info->crop_yoffset >= info->output_height)
if (info->crop_width_set == JCROP_UNSET) {
if (info->crop_xoffset >= info->output_width)
ERREXIT(srcinfo, JERR_BAD_CROP_SPEC);
if (info->crop_width_set == JCROP_UNSET)
info->crop_width = info->output_width - info->crop_xoffset;
if (info->crop_height_set == JCROP_UNSET)
} else {
/* Check for crop extension */
if (info->crop_width > info->output_width) {
/* Crop extension does not work when transforming! */
if (info->transform != JXFORM_NONE ||
info->crop_xoffset >= info->crop_width ||
info->crop_xoffset > info->crop_width - info->output_width)
ERREXIT(srcinfo, JERR_BAD_CROP_SPEC);
} else {
if (info->crop_xoffset >= info->output_width ||
info->crop_width <= 0 ||
info->crop_xoffset > info->output_width - info->crop_width)
ERREXIT(srcinfo, JERR_BAD_CROP_SPEC);
}
}
if (info->crop_height_set == JCROP_UNSET) {
if (info->crop_yoffset >= info->output_height)
ERREXIT(srcinfo, JERR_BAD_CROP_SPEC);
info->crop_height = info->output_height - info->crop_yoffset;
/* Ensure parameters are valid */
if (info->crop_width <= 0 || info->crop_width > info->output_width ||
info->crop_height <= 0 || info->crop_height > info->output_height ||
info->crop_xoffset > info->output_width - info->crop_width ||
} else {
/* Check for crop extension */
if (info->crop_height > info->output_height) {
/* Crop extension does not work when transforming! */
if (info->transform != JXFORM_NONE ||
info->crop_yoffset >= info->crop_height ||
info->crop_yoffset > info->crop_height - info->output_height)
ERREXIT(srcinfo, JERR_BAD_CROP_SPEC);
} else {
if (info->crop_yoffset >= info->output_height ||
info->crop_height <= 0 ||
info->crop_yoffset > info->output_height - info->crop_height)
ERREXIT(srcinfo, JERR_BAD_CROP_SPEC);
}
}
/* Convert negative crop offsets into regular offsets */
if (info->crop_xoffset_set == JCROP_NEG)
xoffset = info->output_width - info->crop_width - info->crop_xoffset;
else
if (info->crop_xoffset_set != JCROP_NEG)
xoffset = info->crop_xoffset;
if (info->crop_yoffset_set == JCROP_NEG)
yoffset = info->output_height - info->crop_height - info->crop_yoffset;
else if (info->crop_width > info->output_width) /* crop extension */
xoffset = info->crop_width - info->output_width - info->crop_xoffset;
else
xoffset = info->output_width - info->crop_width - info->crop_xoffset;
if (info->crop_yoffset_set != JCROP_NEG)
yoffset = info->crop_yoffset;
else if (info->crop_height > info->output_height) /* crop extension */
yoffset = info->crop_height - info->output_height - info->crop_yoffset;
else
yoffset = info->output_height - info->crop_height - info->crop_yoffset;
/* Now adjust so that upper left corner falls at an iMCU boundary */
if (info->crop_width_set == JCROP_FORCE)
if (info->transform == JXFORM_WIPE) {
/* Ensure the effective wipe region will cover the requested */
info->drop_width = (JDIMENSION) jdiv_round_up
((long) (info->crop_width + (xoffset % info->iMCU_sample_width)),
(long) info->iMCU_sample_width);
info->drop_height = (JDIMENSION) jdiv_round_up
((long) (info->crop_height + (yoffset % info->iMCU_sample_height)),
(long) info->iMCU_sample_height);
} else {
/* Ensure the effective crop region will cover the requested */
if (info->crop_width_set == JCROP_FORCE ||
info->crop_width > info->output_width)
info->output_width = info->crop_width;
else
info->output_width =
info->crop_width + (xoffset % info->iMCU_sample_width);
if (info->crop_height_set == JCROP_FORCE)
if (info->crop_height_set == JCROP_FORCE ||
info->crop_height > info->output_height)
info->output_height = info->crop_height;
else
info->output_height =
info->crop_height + (yoffset % info->iMCU_sample_height);
}
/* Save x/y offsets measured in iMCUs */
info->x_crop_offset = xoffset / info->iMCU_sample_width;
info->y_crop_offset = yoffset / info->iMCU_sample_height;
@ -1013,7 +1166,9 @@ jtransform_request_workspace (j_decompress_ptr srcinfo,
transpose_it = FALSE;
switch (info->transform) {
case JXFORM_NONE:
if (info->x_crop_offset != 0 || info->y_crop_offset != 0)
if (info->x_crop_offset != 0 || info->y_crop_offset != 0 ||
info->output_width > srcinfo->output_width ||
info->output_height > srcinfo->output_height)
need_workspace = TRUE;
/* No workspace needed if neither cropping nor transforming */
break;
@ -1067,6 +1222,8 @@ jtransform_request_workspace (j_decompress_ptr srcinfo,
need_workspace = TRUE;
transpose_it = TRUE;
break;
case JXFORM_WIPE:
break;
}
/* Allocate workspace if needed.
@ -1327,12 +1484,13 @@ jtransform_adjust_parameters (j_decompress_ptr srcinfo,
{
/* If force-to-grayscale is requested, adjust destination parameters */
if (info->force_grayscale) {
/* First, ensure we have YCbCr or grayscale data, and that the source's
/* First, ensure we have YCC or grayscale data, and that the source's
* Y channel is full resolution. (No reasonable person would make Y
* be less than full resolution, so actually coping with that case
* isn't worth extra code space. But we check it to avoid crashing.)
*/
if (((dstinfo->jpeg_color_space == JCS_YCbCr &&
if ((((dstinfo->jpeg_color_space == JCS_YCbCr ||
dstinfo->jpeg_color_space == JCS_BG_YCC) &&
dstinfo->num_components == 3) ||
(dstinfo->jpeg_color_space == JCS_GRAYSCALE &&
dstinfo->num_components == 1)) &&
@ -1427,7 +1585,11 @@ jtransform_execute_transform (j_decompress_ptr srcinfo,
*/
switch (info->transform) {
case JXFORM_NONE:
if (info->x_crop_offset != 0 || info->y_crop_offset != 0)
if (info->output_width > srcinfo->output_width ||
info->output_height > srcinfo->output_height)
do_crop_ext(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
src_coef_arrays, dst_coef_arrays);
else if (info->x_crop_offset != 0 || info->y_crop_offset != 0)
do_crop(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
src_coef_arrays, dst_coef_arrays);
break;
@ -1463,6 +1625,10 @@ jtransform_execute_transform (j_decompress_ptr srcinfo,
do_rot_270(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
src_coef_arrays, dst_coef_arrays);
break;
case JXFORM_WIPE:
do_wipe(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
src_coef_arrays, info->drop_width, info->drop_height);
break;
}
}

View File

@ -1,7 +1,7 @@
/*
* transupp.h
*
* Copyright (C) 1997-2011, Thomas G. Lane, Guido Vollbeding.
* Copyright (C) 1997-2013, Thomas G. Lane, Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
@ -51,14 +51,17 @@
*
* We also offer a lossless-crop option, which discards data outside a given
* image region but losslessly preserves what is inside. Like the rotate and
* flip transforms, lossless crop is restricted by the JPEG format: the upper
* left corner of the selected region must fall on an iMCU boundary. If this
* does not hold for the given crop parameters, we silently move the upper left
* corner up and/or left to make it so, simultaneously increasing the region
* dimensions to keep the lower right crop corner unchanged. (Thus, the
* flip transforms, lossless crop is restricted by the current JPEG format: the
* upper left corner of the selected region must fall on an iMCU boundary. If
* this does not hold for the given crop parameters, we silently move the upper
* left corner up and/or left to make it so, simultaneously increasing the
* region dimensions to keep the lower right crop corner unchanged. (Thus, the
* output image covers at least the requested region, but may cover more.)
* The adjustment of the region dimensions may be optionally disabled.
*
* A complementary lossless-wipe option is provided to discard (gray out) data
* inside a given image region while losslessly preserving what is outside.
*
* We also provide a lossless-resize option, which is kind of a lossless-crop
* operation in the DCT coefficient block domain - it discards higher-order
* coefficients and losslessly preserves lower-order coefficients of a
@ -102,7 +105,8 @@ typedef enum {
JXFORM_TRANSVERSE, /* transpose across UR-to-LL axis */
JXFORM_ROT_90, /* 90-degree clockwise rotation */
JXFORM_ROT_180, /* 180-degree rotation */
JXFORM_ROT_270 /* 270-degree clockwise (or 90 ccw) */
JXFORM_ROT_270, /* 270-degree clockwise (or 90 ccw) */
JXFORM_WIPE /* wipe */
} JXFORM_CODE;
/*
@ -130,7 +134,7 @@ typedef struct {
boolean perfect; /* if TRUE, fail if partial MCUs are requested */
boolean trim; /* if TRUE, trim partial MCUs as needed */
boolean force_grayscale; /* if TRUE, convert color image to grayscale */
boolean crop; /* if TRUE, crop source image */
boolean crop; /* if TRUE, crop or wipe source image */
/* Crop parameters: application need not set these unless crop is TRUE.
* These can be filled in by jtransform_parse_crop_spec().
@ -151,6 +155,8 @@ typedef struct {
JDIMENSION output_height;
JDIMENSION x_crop_offset; /* destination crop offsets measured in iMCUs */
JDIMENSION y_crop_offset;
JDIMENSION drop_width; /* drop/wipe dimensions measured in iMCUs */
JDIMENSION drop_height;
int iMCU_sample_width; /* destination iMCU size */
int iMCU_sample_height;
} jpeg_transform_info;

View File

@ -158,10 +158,10 @@ file size is about the same --- often a little smaller.
Switches for advanced users:
-arithmetic Use arithmetic coding. CAUTION: arithmetic coded JPEG
is not yet widely implemented, so many decoders will
be unable to view an arithmetic coded JPEG file at
all.
-arithmetic Use arithmetic coding.
CAUTION: arithmetic coded JPEG is not yet widely
implemented, so many decoders will be unable to
view an arithmetic coded JPEG file at all.
-block N Set DCT block size. All N from 1 to 16 are possible.
Default is 8 (baseline format).
@ -188,6 +188,25 @@ Switches for advanced users:
so many decoders will be unable to view a reversible
color transformed JPEG file at all.
-bgycc Create big gamut YCC JPEG file.
In this type of encoding the color difference
components are quantized further by a factor of 2
compared to the normal Cb/Cr values, thus creating
space to allow larger color values with higher
saturation than the normal gamut limits to be encoded.
In order to compensate for the loss of color fidelity
compared to a normal YCC encoded file, the color
quantization tables can be adjusted accordingly.
For example, cjpeg -bgycc -quality 80,90 will give
similar results as cjpeg -quality 80.
CAUTION: For correct decompression a decoder with big
gamut YCC support (JFIF version 2) is required.
An old decoder may or may not display a big gamut YCC
encoded JPEG file, depending on JFIF version check
and corresponding warning/error configuration.
In case of a granted decompression the old decoder
will display the image with half saturated colors.
-dct int Use integer DCT method (default).
-dct fast Use fast integer DCT (less accurate).
-dct float Use floating-point DCT method.
@ -387,7 +406,8 @@ quality settings to make very small JPEG files; the percentage improvement
is often a lot more than it is on larger files. (At present, -optimize
mode is always selected when generating progressive JPEG files.)
GIF input files are no longer supported, to avoid the Unisys LZW patent.
GIF input files are no longer supported, to avoid the Unisys LZW patent
(now expired).
(Conversion of GIF files to JPEG is usually a bad idea anyway.)
@ -415,8 +435,9 @@ it may run out of memory even with -maxmemory 0. In that case you can still
decompress, with some loss of image quality, by specifying -onepass for
one-pass quantization.
To avoid the Unisys LZW patent, djpeg produces uncompressed GIF files. These
are larger than they should be, but are readable by standard GIF decoders.
To avoid the Unisys LZW patent (now expired), djpeg produces uncompressed GIF
files. These are larger than they should be, but are readable by standard GIF
decoders.
HINTS FOR BOTH PROGRAMS
@ -533,14 +554,20 @@ image region but losslessly preserves what is inside. Like the rotate and
flip transforms, lossless crop is restricted by the current JPEG format: the
upper left corner of the selected region must fall on an iMCU boundary. If
this does not hold for the given crop parameters, we silently move the upper
left corner up and/or left to make it so, simultaneously increasing the region
dimensions to keep the lower right crop corner unchanged. (Thus, the output
image covers at least the requested region, but may cover more.)
left corner up and/or left to make it so, simultaneously increasing the
region dimensions to keep the lower right crop corner unchanged. (Thus, the
output image covers at least the requested region, but may cover more.)
The adjustment of the region dimensions may be optionally disabled.
The image can be losslessly cropped by giving the switch:
-crop WxH+X+Y Crop to a rectangular subarea of width W, height H
starting at point X,Y.
A complementary lossless-wipe option is provided to discard (gray out) data
inside a given image region while losslessly preserving what is outside:
-wipe WxH+X+Y Wipe (gray out) a rectangular subarea of
width W, height H starting at point X,Y.
Other not-strictly-lossless transformation switches are:
-grayscale Force grayscale output.