The Independent JPEG Group's JPEG software v6b with arithmetic coding support
This commit is contained in:
parent
5ead57a34a
commit
1e247ac854
215
README.arithmetic
Normal file
215
README.arithmetic
Normal file
@ -0,0 +1,215 @@
|
||||
JPEG arithmetic encoding and decoding portable software implementation
|
||||
======================================================================
|
||||
|
||||
Release of 28-Mar-98 by Guido Vollbeding <guido@jpegclub.org>
|
||||
=============================================================
|
||||
|
||||
Primary URLs:
|
||||
|
||||
http://sylvana.net/jpeg-ari/
|
||||
(directory containing the actual archive files:)
|
||||
|
||||
http://sylvana.net/jpeg-ari/jpeg-ari-28mar98.tar.gz
|
||||
|
||||
http://sylvana.net/jpeg-ari/jpeg-ari.zip
|
||||
|
||||
|
||||
DISCLAIMER
|
||||
==========
|
||||
|
||||
This package is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||||
|
||||
It is possible that certain products which can be built using this
|
||||
software modules might form inventions protected by patent rights in
|
||||
some countries (e.g. by patents about arithmetic coding algorithms
|
||||
owned by IBM and AT&T in the USA). Provision of this software by the
|
||||
author does NOT include any licenses for any patents.
|
||||
In those countries where a patent license is required for certain
|
||||
applications of this software modules, you will have to obtain such
|
||||
a license yourself.
|
||||
|
||||
See Annex L in the JPEG spec for further information
|
||||
and a list of relevant patents.
|
||||
|
||||
|
||||
What is it?
|
||||
===========
|
||||
|
||||
This is my implementation of the arithmetic encoding and decoding
|
||||
back-end for JPEG as specified in the
|
||||
|
||||
ISO/IEC International Standard 10918-1 and CCITT Recommendation
|
||||
ITU-T T.81, "Information Technology - Digital Compression and
|
||||
Coding of Continuous-tone Still Images, Part 1: Requirements
|
||||
and Guidelines".
|
||||
|
||||
Arithmetic coding is a state-of-the-art lossless entropy data
|
||||
compression method which offers better compression performance
|
||||
than the well-established Huffman entropy coding process.
|
||||
|
||||
The JPEG standard specifies a particular arithmetic coding scheme
|
||||
to be used optionally as alternative to Huffman coding.
|
||||
|
||||
|
||||
Who needs it?
|
||||
=============
|
||||
|
||||
This package might be of interest for people who are looking for
|
||||
enhanced state-of-the-art image compression technologies.
|
||||
|
||||
It is intended to provide a reasonable tool for experimental,
|
||||
comparison and evaluation purposes.
|
||||
|
||||
See the Disclaimer above for restricted conditions of usage.
|
||||
|
||||
|
||||
How does it work?
|
||||
=================
|
||||
|
||||
This distribution is organized as add-on to the widespread
|
||||
Independent JPEG Group's JPEG software.
|
||||
|
||||
Thus, once you managed to install the IJG software distribution
|
||||
successfully, there should be no additional problems (portability
|
||||
issues etc.) to incorporate this package into the library,
|
||||
and usage is straightforward.
|
||||
|
||||
Transcode given JPEG files simply with a command like
|
||||
|
||||
jpegtran -arithmetic [-progressive] < orig.jpg > arit.jpg
|
||||
|
||||
into an arithmetic coded version LOSSLESSLY! Since there are
|
||||
practically no applications in existence which can handle such
|
||||
files, you can only transform it back with the same tool
|
||||
|
||||
jpegtran [-optimize] [-progressive] < arit.jpg > orig2.jpg
|
||||
|
||||
to verify correct operation.
|
||||
|
||||
Thus, you can easily verify the enhanced compression performance
|
||||
of the arithmetic coding version compared to the Huffman (with
|
||||
fixed or custom tables) version.
|
||||
|
||||
The claim to evaluate was that arithmetic coding gives an average
|
||||
5-10% compression improvement against Huffman.
|
||||
Early tests with this implementation support this claim, and you
|
||||
can perform tests with own material.
|
||||
|
||||
Here are some actual results:
|
||||
|
||||
% ./jpegtran -optimize < testorig.jpg > testopt.jpg
|
||||
% ./jpegtran -arithmetic < testorig.jpg > testarit.jpg
|
||||
% ./jpegtran < testarit.jpg > testorig2.jpg
|
||||
% ./jpegtran -arithmetic -progressive < testorig.jpg > testaritp.jpg
|
||||
% ./jpegtran < testaritp.jpg > testorig3.jpg
|
||||
% ./jpegtran -optimize < ../butterfly.jpg > ../buttopt.jpg
|
||||
% ./jpegtran -progressive < ../butterfly.jpg > ../buttprog.jpg
|
||||
% ./jpegtran -arithmetic < ../butterfly.jpg > ../buttarit.jpg
|
||||
% ./jpegtran < ../buttarit.jpg > ../butterfly2.jpg
|
||||
% ./jpegtran -arithmetic -progressive < ../butterfly.jpg > ../buttaritp.jpg
|
||||
% ./jpegtran < ../buttaritp.jpg > ../butterfly3.jpg
|
||||
% ls -l test*.jpg
|
||||
-rw-r--r-- 1 guivol 5153 Apr 13 18:51 testarit.jpg
|
||||
-rw-r--r-- 1 guivol 5186 Apr 13 18:51 testaritp.jpg
|
||||
-rw-r--r-- 1 guivol 5756 Apr 2 15:10 testimg.jpg
|
||||
-rw-r--r-- 1 guivol 5645 Apr 2 15:10 testimgp.jpg
|
||||
-rw-r--r-- 1 guivol 5463 Apr 13 18:51 testopt.jpg
|
||||
-rw-r--r-- 1 guivol 5770 Apr 2 15:10 testorig.jpg
|
||||
-rw-r--r-- 1 guivol 5770 Apr 13 18:51 testorig2.jpg
|
||||
-rw-r--r-- 1 guivol 5770 Apr 13 18:51 testorig3.jpg
|
||||
-rw-r--r-- 1 guivol 5655 Apr 2 15:10 testprog.jpg
|
||||
% ls -l ../butt*.jpg
|
||||
-rw-r--r-- 1 guivol 460091 Apr 13 18:52 ../buttarit.jpg
|
||||
-rw-r--r-- 1 guivol 453703 Apr 13 18:52 ../buttaritp.jpg
|
||||
-rw-r--r-- 1 guivol 527823 Nov 19 18:41 ../butterfly.jpg
|
||||
-rw-r--r-- 1 guivol 527823 Apr 13 18:52 ../butterfly2.jpg
|
||||
-rw-r--r-- 1 guivol 527823 Apr 13 18:52 ../butterfly3.jpg
|
||||
-rw-r--r-- 1 guivol 511834 Apr 13 18:52 ../buttopt.jpg
|
||||
-rw-r--r-- 1 guivol 492237 Apr 13 18:52 ../buttprog.jpg
|
||||
%
|
||||
|
||||
Note that arithmetic coding requires only a single processing
|
||||
pass due to its fully-adaptive nature, and compared to one-pass
|
||||
(fixed tables) Huffman the arithmetic coded version consistently
|
||||
achieves 10% compression improvement.
|
||||
Compared with two-pass (custom tables) Huffman the improvement
|
||||
is 5-10%.
|
||||
|
||||
Note that I wasn't able yet to cross-check interoperability of
|
||||
the produced files with other implementations.
|
||||
Thus, I can't be sure that the files are compliant to the spec,
|
||||
but I hope so and the tests support it.
|
||||
The encoding and decoding processes should be correct anyway,
|
||||
however, in the sense that they are complementary to each other
|
||||
and thus retain data integrity.
|
||||
|
||||
I would appreciate any indications for compliance or interoperability
|
||||
with other implementations from somebody.
|
||||
Please let me know if you are able to cross-check something.
|
||||
|
||||
|
||||
Installation
|
||||
============
|
||||
|
||||
The installation is a 2-stage procedure:
|
||||
|
||||
1. Preparing the IJG package for potential incorporation
|
||||
of the arithmetic coding feature.
|
||||
|
||||
2. Incorporation of the actual arithmetic coding modules
|
||||
and enabling the feature for usage.
|
||||
|
||||
The reason for this 2-stage process is the hope to make
|
||||
step 1 obsolete in future IJG releases.
|
||||
The actual implementation should remain separate IMHO due
|
||||
to the different usage conditions.
|
||||
|
||||
Step 1:
|
||||
|
||||
1.1. Copy all files from the subdirectory 'patchv6b' into
|
||||
the IJG software's v6b source directory.
|
||||
This includes minor patches to some files and 3 extra
|
||||
files which hold place for the actual implementation.
|
||||
|
||||
1.2. Update your Makefile/Projectfile for the inclusion of
|
||||
the 3 extra files. This will be done automatically
|
||||
if you use a configure-generated makefile and type
|
||||
'./configure' (reconfigure).
|
||||
|
||||
1.3. Recompile ('make').
|
||||
|
||||
See the file 'PATCHES' in 'patchv6b' for details.
|
||||
|
||||
Step 2:
|
||||
|
||||
2.1. Replace the 3 placeholder files by the actual implementation
|
||||
modules.
|
||||
|
||||
2.2. Enable application support of the new features by #defining
|
||||
C_ARITH_CODING_SUPPORTED and D_ARITH_CODING_SUPPORTED
|
||||
in 'jmorecfg.h'.
|
||||
|
||||
2.3. Recompile ('make').
|
||||
|
||||
Note that I suggest to add 3 placeholder files to the IJG
|
||||
distribution. This would remove the need for system-dependent
|
||||
changes (Makefiles) and thus considerably simplify the actual
|
||||
installation for systems without a configure-generated makefile.
|
||||
|
||||
|
||||
References
|
||||
==========
|
||||
|
||||
- The Independent JPEG Group's software
|
||||
|
||||
- JBIG-KIT lossless image compression library by Markus Kuhn
|
||||
|
||||
- William B. Pennebaker, Joan L. Mitchell:
|
||||
"JPEG Still Image Data Compression Standard",
|
||||
Van Nostrand Reinhold, 1993, ISBN 0-442-01272-1.
|
||||
|
||||
- jpeg-faq (http://www.faqs.org/faqs/jpeg-faq/)
|
||||
|
||||
- compression-faq (http://www.faqs.org/faqs/compression-faq/)
|
149
jaricom.c
Normal file
149
jaricom.c
Normal file
@ -0,0 +1,149 @@
|
||||
/*
|
||||
* jaricom.c
|
||||
*
|
||||
* Copyright (C) 1997, Guido Vollbeding <guivol@esc.de>.
|
||||
* This file is NOT part of the Independent JPEG Group's software
|
||||
* for legal reasons.
|
||||
* See the accompanying README file for conditions of distribution and use.
|
||||
*
|
||||
* This file contains probability estimation tables for common use in
|
||||
* arithmetic entropy encoding and decoding routines.
|
||||
*
|
||||
* This data represents Table D.2 in the JPEG spec (ISO/IEC IS 10918-1
|
||||
* and CCITT Recommendation ITU-T T.81) and Table 24 in the JBIG spec
|
||||
* (ISO/IEC IS 11544 and CCITT Recommendation ITU-T T.82).
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
/* The following #define specifies the packing of the four components
|
||||
* into the compact INT32 representation.
|
||||
* Note that this formula must match the actual arithmetic encoder
|
||||
* and decoder implementation. The implementation has to be changed
|
||||
* if this formula is changed.
|
||||
* The current organisation is leaned on Markus Kuhn's JBIG
|
||||
* implementation (jbig_tab.c).
|
||||
*/
|
||||
|
||||
#define V(a,b,c,d) (((INT32)a << 16) | ((INT32)c << 8) | ((INT32)d << 7) | b)
|
||||
|
||||
const INT32 jaritab[113] = {
|
||||
/*
|
||||
* Index, Qe_Value, Next_Index_LPS, Next_Index_MPS, Switch_MPS
|
||||
*/
|
||||
/* 0 */ V( 0x5a1d, 1, 1, 1 ),
|
||||
/* 1 */ V( 0x2586, 14, 2, 0 ),
|
||||
/* 2 */ V( 0x1114, 16, 3, 0 ),
|
||||
/* 3 */ V( 0x080b, 18, 4, 0 ),
|
||||
/* 4 */ V( 0x03d8, 20, 5, 0 ),
|
||||
/* 5 */ V( 0x01da, 23, 6, 0 ),
|
||||
/* 6 */ V( 0x00e5, 25, 7, 0 ),
|
||||
/* 7 */ V( 0x006f, 28, 8, 0 ),
|
||||
/* 8 */ V( 0x0036, 30, 9, 0 ),
|
||||
/* 9 */ V( 0x001a, 33, 10, 0 ),
|
||||
/* 10 */ V( 0x000d, 35, 11, 0 ),
|
||||
/* 11 */ V( 0x0006, 9, 12, 0 ),
|
||||
/* 12 */ V( 0x0003, 10, 13, 0 ),
|
||||
/* 13 */ V( 0x0001, 12, 13, 0 ),
|
||||
/* 14 */ V( 0x5a7f, 15, 15, 1 ),
|
||||
/* 15 */ V( 0x3f25, 36, 16, 0 ),
|
||||
/* 16 */ V( 0x2cf2, 38, 17, 0 ),
|
||||
/* 17 */ V( 0x207c, 39, 18, 0 ),
|
||||
/* 18 */ V( 0x17b9, 40, 19, 0 ),
|
||||
/* 19 */ V( 0x1182, 42, 20, 0 ),
|
||||
/* 20 */ V( 0x0cef, 43, 21, 0 ),
|
||||
/* 21 */ V( 0x09a1, 45, 22, 0 ),
|
||||
/* 22 */ V( 0x072f, 46, 23, 0 ),
|
||||
/* 23 */ V( 0x055c, 48, 24, 0 ),
|
||||
/* 24 */ V( 0x0406, 49, 25, 0 ),
|
||||
/* 25 */ V( 0x0303, 51, 26, 0 ),
|
||||
/* 26 */ V( 0x0240, 52, 27, 0 ),
|
||||
/* 27 */ V( 0x01b1, 54, 28, 0 ),
|
||||
/* 28 */ V( 0x0144, 56, 29, 0 ),
|
||||
/* 29 */ V( 0x00f5, 57, 30, 0 ),
|
||||
/* 30 */ V( 0x00b7, 59, 31, 0 ),
|
||||
/* 31 */ V( 0x008a, 60, 32, 0 ),
|
||||
/* 32 */ V( 0x0068, 62, 33, 0 ),
|
||||
/* 33 */ V( 0x004e, 63, 34, 0 ),
|
||||
/* 34 */ V( 0x003b, 32, 35, 0 ),
|
||||
/* 35 */ V( 0x002c, 33, 9, 0 ),
|
||||
/* 36 */ V( 0x5ae1, 37, 37, 1 ),
|
||||
/* 37 */ V( 0x484c, 64, 38, 0 ),
|
||||
/* 38 */ V( 0x3a0d, 65, 39, 0 ),
|
||||
/* 39 */ V( 0x2ef1, 67, 40, 0 ),
|
||||
/* 40 */ V( 0x261f, 68, 41, 0 ),
|
||||
/* 41 */ V( 0x1f33, 69, 42, 0 ),
|
||||
/* 42 */ V( 0x19a8, 70, 43, 0 ),
|
||||
/* 43 */ V( 0x1518, 72, 44, 0 ),
|
||||
/* 44 */ V( 0x1177, 73, 45, 0 ),
|
||||
/* 45 */ V( 0x0e74, 74, 46, 0 ),
|
||||
/* 46 */ V( 0x0bfb, 75, 47, 0 ),
|
||||
/* 47 */ V( 0x09f8, 77, 48, 0 ),
|
||||
/* 48 */ V( 0x0861, 78, 49, 0 ),
|
||||
/* 49 */ V( 0x0706, 79, 50, 0 ),
|
||||
/* 50 */ V( 0x05cd, 48, 51, 0 ),
|
||||
/* 51 */ V( 0x04de, 50, 52, 0 ),
|
||||
/* 52 */ V( 0x040f, 50, 53, 0 ),
|
||||
/* 53 */ V( 0x0363, 51, 54, 0 ),
|
||||
/* 54 */ V( 0x02d4, 52, 55, 0 ),
|
||||
/* 55 */ V( 0x025c, 53, 56, 0 ),
|
||||
/* 56 */ V( 0x01f8, 54, 57, 0 ),
|
||||
/* 57 */ V( 0x01a4, 55, 58, 0 ),
|
||||
/* 58 */ V( 0x0160, 56, 59, 0 ),
|
||||
/* 59 */ V( 0x0125, 57, 60, 0 ),
|
||||
/* 60 */ V( 0x00f6, 58, 61, 0 ),
|
||||
/* 61 */ V( 0x00cb, 59, 62, 0 ),
|
||||
/* 62 */ V( 0x00ab, 61, 63, 0 ),
|
||||
/* 63 */ V( 0x008f, 61, 32, 0 ),
|
||||
/* 64 */ V( 0x5b12, 65, 65, 1 ),
|
||||
/* 65 */ V( 0x4d04, 80, 66, 0 ),
|
||||
/* 66 */ V( 0x412c, 81, 67, 0 ),
|
||||
/* 67 */ V( 0x37d8, 82, 68, 0 ),
|
||||
/* 68 */ V( 0x2fe8, 83, 69, 0 ),
|
||||
/* 69 */ V( 0x293c, 84, 70, 0 ),
|
||||
/* 70 */ V( 0x2379, 86, 71, 0 ),
|
||||
/* 71 */ V( 0x1edf, 87, 72, 0 ),
|
||||
/* 72 */ V( 0x1aa9, 87, 73, 0 ),
|
||||
/* 73 */ V( 0x174e, 72, 74, 0 ),
|
||||
/* 74 */ V( 0x1424, 72, 75, 0 ),
|
||||
/* 75 */ V( 0x119c, 74, 76, 0 ),
|
||||
/* 76 */ V( 0x0f6b, 74, 77, 0 ),
|
||||
/* 77 */ V( 0x0d51, 75, 78, 0 ),
|
||||
/* 78 */ V( 0x0bb6, 77, 79, 0 ),
|
||||
/* 79 */ V( 0x0a40, 77, 48, 0 ),
|
||||
/* 80 */ V( 0x5832, 80, 81, 1 ),
|
||||
/* 81 */ V( 0x4d1c, 88, 82, 0 ),
|
||||
/* 82 */ V( 0x438e, 89, 83, 0 ),
|
||||
/* 83 */ V( 0x3bdd, 90, 84, 0 ),
|
||||
/* 84 */ V( 0x34ee, 91, 85, 0 ),
|
||||
/* 85 */ V( 0x2eae, 92, 86, 0 ),
|
||||
/* 86 */ V( 0x299a, 93, 87, 0 ),
|
||||
/* 87 */ V( 0x2516, 86, 71, 0 ),
|
||||
/* 88 */ V( 0x5570, 88, 89, 1 ),
|
||||
/* 89 */ V( 0x4ca9, 95, 90, 0 ),
|
||||
/* 90 */ V( 0x44d9, 96, 91, 0 ),
|
||||
/* 91 */ V( 0x3e22, 97, 92, 0 ),
|
||||
/* 92 */ V( 0x3824, 99, 93, 0 ),
|
||||
/* 93 */ V( 0x32b4, 99, 94, 0 ),
|
||||
/* 94 */ V( 0x2e17, 93, 86, 0 ),
|
||||
/* 95 */ V( 0x56a8, 95, 96, 1 ),
|
||||
/* 96 */ V( 0x4f46, 101, 97, 0 ),
|
||||
/* 97 */ V( 0x47e5, 102, 98, 0 ),
|
||||
/* 98 */ V( 0x41cf, 103, 99, 0 ),
|
||||
/* 99 */ V( 0x3c3d, 104, 100, 0 ),
|
||||
/* 100 */ V( 0x375e, 99, 93, 0 ),
|
||||
/* 101 */ V( 0x5231, 105, 102, 0 ),
|
||||
/* 102 */ V( 0x4c0f, 106, 103, 0 ),
|
||||
/* 103 */ V( 0x4639, 107, 104, 0 ),
|
||||
/* 104 */ V( 0x415e, 103, 99, 0 ),
|
||||
/* 105 */ V( 0x5627, 105, 106, 1 ),
|
||||
/* 106 */ V( 0x50e7, 108, 107, 0 ),
|
||||
/* 107 */ V( 0x4b85, 109, 103, 0 ),
|
||||
/* 108 */ V( 0x5597, 110, 109, 0 ),
|
||||
/* 109 */ V( 0x504f, 111, 107, 0 ),
|
||||
/* 110 */ V( 0x5a10, 110, 111, 1 ),
|
||||
/* 111 */ V( 0x5522, 112, 109, 0 ),
|
||||
/* 112 */ V( 0x59eb, 112, 111, 1 )
|
||||
};
|
922
jcarith.c
Normal file
922
jcarith.c
Normal file
@ -0,0 +1,922 @@
|
||||
/*
|
||||
* jcarith.c
|
||||
*
|
||||
* Copyright (C) 1997, Guido Vollbeding <guivol@esc.de>.
|
||||
* This file is NOT part of the Independent JPEG Group's software
|
||||
* for legal reasons.
|
||||
* See the accompanying README file for conditions of distribution and use.
|
||||
*
|
||||
* This file contains portable arithmetic entropy encoding routines for JPEG
|
||||
* (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
|
||||
*
|
||||
* Both sequential and progressive modes are supported in this single module.
|
||||
*
|
||||
* Suspension is not currently supported in this module.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Expanded entropy encoder object for arithmetic encoding. */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_entropy_encoder pub; /* public fields */
|
||||
|
||||
INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */
|
||||
INT32 a; /* A register, normalized size of coding interval */
|
||||
INT32 sc; /* counter for stacked 0xFF values which might overflow */
|
||||
INT32 zc; /* counter for pending 0x00 output values which might *
|
||||
* be discarded at the end ("Pacman" termination) */
|
||||
int ct; /* bit shift counter, determines when next byte will be written */
|
||||
int buffer; /* buffer for most recent output byte != 0xFF */
|
||||
|
||||
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
||||
int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
|
||||
|
||||
unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
||||
int next_restart_num; /* next restart number to write (0-7) */
|
||||
|
||||
/* Pointers to statistics areas (these workspaces have image lifespan) */
|
||||
unsigned char * dc_stats[NUM_ARITH_TBLS];
|
||||
unsigned char * ac_stats[NUM_ARITH_TBLS];
|
||||
} arith_entropy_encoder;
|
||||
|
||||
typedef arith_entropy_encoder * arith_entropy_ptr;
|
||||
|
||||
/* The following two definitions specify the allocation chunk size
|
||||
* for the statistics area.
|
||||
* According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
|
||||
* 49 statistics bins for DC, and 245 statistics bins for AC coding.
|
||||
* Note that we use one additional AC bin for codings with fixed
|
||||
* probability (0.5), thus the minimum number for AC is 246.
|
||||
*
|
||||
* We use a compact representation with 1 byte per statistics bin,
|
||||
* thus the numbers directly represent byte sizes.
|
||||
* This 1 byte per statistics bin contains the meaning of the MPS
|
||||
* (more probable symbol) in the highest bit (mask 0x80), and the
|
||||
* index into the probability estimation state machine table
|
||||
* in the lower bits (mask 0x7F).
|
||||
*/
|
||||
|
||||
#define DC_STAT_BINS 64
|
||||
#define AC_STAT_BINS 256
|
||||
|
||||
/* NOTE: Uncomment the following #define if you want to use the
|
||||
* given formula for calculating the AC conditioning parameter Kx
|
||||
* for spectral selection progressive coding in section G.1.3.2
|
||||
* of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
|
||||
* Although the spec and P&M authors claim that this "has proven
|
||||
* to give good results for 8 bit precision samples", I'm not
|
||||
* convinced yet that this is really beneficial.
|
||||
* Early tests gave only very marginal compression enhancements
|
||||
* (a few - around 5 or so - bytes even for very large files),
|
||||
* which would turn out rather negative if we'd suppress the
|
||||
* DAC (Define Arithmetic Conditioning) marker segments for
|
||||
* the default parameters in the future.
|
||||
* Note that currently the marker writing module emits 12-byte
|
||||
* DAC segments for a full-component scan in a color image.
|
||||
* This is not worth worrying about IMHO. However, since the
|
||||
* spec defines the default values to be used if the tables
|
||||
* are omitted (unlike Huffman tables, which are required
|
||||
* anyway), one might optimize this behaviour in the future,
|
||||
* and then it would be disadvantageous to use custom tables if
|
||||
* they don't provide sufficient gain to exceed the DAC size.
|
||||
*
|
||||
* On the other hand, I'd consider it as a reasonable result
|
||||
* that the conditioning has no significant influence on the
|
||||
* compression performance. This means that the basic
|
||||
* statistical model is already rather stable.
|
||||
*
|
||||
* Thus, at the moment, we use the default conditioning values
|
||||
* anyway, and do not use the custom formula.
|
||||
*
|
||||
#define CALCULATE_SPECTRAL_CONDITIONING
|
||||
*/
|
||||
|
||||
/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
|
||||
* We assume that int right shift is unsigned if INT32 right shift is,
|
||||
* which should be safe.
|
||||
*/
|
||||
|
||||
#ifdef RIGHT_SHIFT_IS_UNSIGNED
|
||||
#define ISHIFT_TEMPS int ishift_temp;
|
||||
#define IRIGHT_SHIFT(x,shft) \
|
||||
((ishift_temp = (x)) < 0 ? \
|
||||
(ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
|
||||
(ishift_temp >> (shft)))
|
||||
#else
|
||||
#define ISHIFT_TEMPS
|
||||
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
|
||||
#endif
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_byte (int val, j_compress_ptr cinfo)
|
||||
/* Write next output byte; we do not support suspension in this module. */
|
||||
{
|
||||
struct jpeg_destination_mgr * dest = cinfo->dest;
|
||||
|
||||
*dest->next_output_byte++ = (JOCTET) val;
|
||||
if (--dest->free_in_buffer == 0)
|
||||
if (! (*dest->empty_output_buffer) (cinfo))
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at the end of an arithmetic-compressed scan.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
finish_pass (j_compress_ptr cinfo)
|
||||
{
|
||||
arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
|
||||
INT32 temp;
|
||||
|
||||
/* Section D.1.8: Termination of encoding */
|
||||
|
||||
/* Find the e->c in the coding interval with the largest
|
||||
* number of trailing zero bits */
|
||||
if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
|
||||
e->c = temp + 0x8000L;
|
||||
else
|
||||
e->c = temp;
|
||||
/* Send remaining bytes to output */
|
||||
e->c <<= e->ct;
|
||||
if (e->c & 0xF8000000L) {
|
||||
/* One final overflow has to be handled */
|
||||
if (e->buffer >= 0) {
|
||||
if (e->zc)
|
||||
do emit_byte(0x00, cinfo);
|
||||
while (--e->zc);
|
||||
emit_byte(e->buffer + 1, cinfo);
|
||||
if (e->buffer + 1 == 0xFF)
|
||||
emit_byte(0x00, cinfo);
|
||||
}
|
||||
e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
|
||||
e->sc = 0;
|
||||
} else {
|
||||
if (e->buffer == 0)
|
||||
++e->zc;
|
||||
else if (e->buffer >= 0) {
|
||||
if (e->zc)
|
||||
do emit_byte(0x00, cinfo);
|
||||
while (--e->zc);
|
||||
emit_byte(e->buffer, cinfo);
|
||||
}
|
||||
if (e->sc) {
|
||||
if (e->zc)
|
||||
do emit_byte(0x00, cinfo);
|
||||
while (--e->zc);
|
||||
do {
|
||||
emit_byte(0xFF, cinfo);
|
||||
emit_byte(0x00, cinfo);
|
||||
} while (--e->sc);
|
||||
}
|
||||
}
|
||||
/* Output final bytes only if they are not 0x00 */
|
||||
if (e->c & 0x7FFF800L) {
|
||||
if (e->zc) /* output final pending zero bytes */
|
||||
do emit_byte(0x00, cinfo);
|
||||
while (--e->zc);
|
||||
emit_byte((e->c >> 19) & 0xFF, cinfo);
|
||||
if (((e->c >> 19) & 0xFF) == 0xFF)
|
||||
emit_byte(0x00, cinfo);
|
||||
if (e->c & 0x7F800L) {
|
||||
emit_byte((e->c >> 11) & 0xFF, cinfo);
|
||||
if (((e->c >> 11) & 0xFF) == 0xFF)
|
||||
emit_byte(0x00, cinfo);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The core arithmetic encoding routine (common in JPEG and JBIG).
|
||||
* This needs to go as fast as possible.
|
||||
* Machine-dependent optimization facilities
|
||||
* are not utilized in this portable implementation.
|
||||
* However, this code should be fairly efficient and
|
||||
* may be a good base for further optimizations anyway.
|
||||
*
|
||||
* Parameter 'val' to be encoded may be 0 or 1 (binary decision).
|
||||
*
|
||||
* Note: I've added full "Pacman" termination support to the
|
||||
* byte output routines, which is equivalent to the optional
|
||||
* Discard_final_zeros procedure (Figure D.15) in the spec.
|
||||
* Thus, we always produce the shortest possible output
|
||||
* stream compliant to the spec (no trailing zero bytes,
|
||||
* except for FF stuffing).
|
||||
*
|
||||
* I've also introduced a new scheme for accessing
|
||||
* the probability estimation state machine table,
|
||||
* derived from Markus Kuhn's JBIG implementation.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
|
||||
{
|
||||
extern const INT32 jaritab[];
|
||||
register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
|
||||
register unsigned char nl, nm;
|
||||
register INT32 qe, temp;
|
||||
register int sv;
|
||||
|
||||
/* Fetch values from our compact representation of Table D.2:
|
||||
* Qe values and probability estimation state machine
|
||||
*/
|
||||
sv = *st;
|
||||
qe = jaritab[sv & 0x7F]; /* => Qe_Value */
|
||||
nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
|
||||
nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
|
||||
|
||||
/* Encode & estimation procedures per sections D.1.4 & D.1.5 */
|
||||
e->a -= qe;
|
||||
if (val != (sv >> 7)) {
|
||||
/* Encode the less probable symbol */
|
||||
if (e->a >= qe) {
|
||||
/* If the interval size (qe) for the less probable symbol (LPS)
|
||||
* is larger than the interval size for the MPS, then exchange
|
||||
* the two symbols for coding efficiency, otherwise code the LPS
|
||||
* as usual: */
|
||||
e->c += e->a;
|
||||
e->a = qe;
|
||||
}
|
||||
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
|
||||
} else {
|
||||
/* Encode the more probable symbol */
|
||||
if (e->a >= 0x8000L)
|
||||
return; /* A >= 0x8000 -> ready, no renormalization required */
|
||||
if (e->a < qe) {
|
||||
/* If the interval size (qe) for the less probable symbol (LPS)
|
||||
* is larger than the interval size for the MPS, then exchange
|
||||
* the two symbols for coding efficiency: */
|
||||
e->c += e->a;
|
||||
e->a = qe;
|
||||
}
|
||||
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
|
||||
}
|
||||
|
||||
/* Renormalization & data output per section D.1.6 */
|
||||
do {
|
||||
e->a <<= 1;
|
||||
e->c <<= 1;
|
||||
if (--e->ct == 0) {
|
||||
/* Another byte is ready for output */
|
||||
temp = e->c >> 19;
|
||||
if (temp > 0xFF) {
|
||||
/* Handle overflow over all stacked 0xFF bytes */
|
||||
if (e->buffer >= 0) {
|
||||
if (e->zc)
|
||||
do emit_byte(0x00, cinfo);
|
||||
while (--e->zc);
|
||||
emit_byte(e->buffer + 1, cinfo);
|
||||
if (e->buffer + 1 == 0xFF)
|
||||
emit_byte(0x00, cinfo);
|
||||
}
|
||||
e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
|
||||
e->sc = 0;
|
||||
/* Note: The 3 spacer bits in the C register guarantee
|
||||
* that the new buffer byte can't be 0xFF here
|
||||
* (see page 160 in the P&M JPEG book). */
|
||||
e->buffer = temp & 0xFF; /* new output byte, might overflow later */
|
||||
} else if (temp == 0xFF) {
|
||||
++e->sc; /* stack 0xFF byte (which might overflow later) */
|
||||
} else {
|
||||
/* Output all stacked 0xFF bytes, they will not overflow any more */
|
||||
if (e->buffer == 0)
|
||||
++e->zc;
|
||||
else if (e->buffer >= 0) {
|
||||
if (e->zc)
|
||||
do emit_byte(0x00, cinfo);
|
||||
while (--e->zc);
|
||||
emit_byte(e->buffer, cinfo);
|
||||
}
|
||||
if (e->sc) {
|
||||
if (e->zc)
|
||||
do emit_byte(0x00, cinfo);
|
||||
while (--e->zc);
|
||||
do {
|
||||
emit_byte(0xFF, cinfo);
|
||||
emit_byte(0x00, cinfo);
|
||||
} while (--e->sc);
|
||||
}
|
||||
e->buffer = temp & 0xFF; /* new output byte (can still overflow) */
|
||||
}
|
||||
e->c &= 0x7FFFFL;
|
||||
e->ct += 8;
|
||||
}
|
||||
} while (e->a < 0x8000L);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Emit a restart marker & resynchronize predictions.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
emit_restart (j_compress_ptr cinfo, int restart_num)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
int ci;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
finish_pass(cinfo);
|
||||
|
||||
emit_byte(0xFF, cinfo);
|
||||
emit_byte(JPEG_RST0 + restart_num, cinfo);
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Re-initialize statistics areas */
|
||||
if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
|
||||
MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
|
||||
/* Reset DC predictions to 0 */
|
||||
entropy->last_dc_val[ci] = 0;
|
||||
entropy->dc_context[ci] = 0;
|
||||
}
|
||||
if (cinfo->progressive_mode == 0 || cinfo->Ss) {
|
||||
MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
|
||||
}
|
||||
}
|
||||
|
||||
/* Reset arithmetic encoding variables */
|
||||
entropy->c = 0;
|
||||
entropy->a = 0x10000L;
|
||||
entropy->sc = 0;
|
||||
entropy->zc = 0;
|
||||
entropy->ct = 11;
|
||||
entropy->buffer = -1; /* empty */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for DC initial scan (either spectral selection,
|
||||
* or first pass of successive approximation).
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
JBLOCKROW block;
|
||||
unsigned char *st;
|
||||
int blkn, ci, tbl;
|
||||
int v, v2, m;
|
||||
ISHIFT_TEMPS
|
||||
|
||||
/* Emit restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0) {
|
||||
emit_restart(cinfo, entropy->next_restart_num);
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num++;
|
||||
entropy->next_restart_num &= 7;
|
||||
}
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
/* Encode the MCU data blocks */
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
block = MCU_data[blkn];
|
||||
ci = cinfo->MCU_membership[blkn];
|
||||
tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
|
||||
|
||||
/* Compute the DC value after the required point transform by Al.
|
||||
* This is simply an arithmetic right shift.
|
||||
*/
|
||||
m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al);
|
||||
|
||||
/* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
|
||||
|
||||
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
|
||||
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
|
||||
|
||||
/* Figure F.4: Encode_DC_DIFF */
|
||||
if ((v = m - entropy->last_dc_val[ci]) == 0) {
|
||||
arith_encode(cinfo, st, 0);
|
||||
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||
} else {
|
||||
entropy->last_dc_val[ci] = m;
|
||||
arith_encode(cinfo, st, 1);
|
||||
/* Figure F.6: Encoding nonzero value v */
|
||||
/* Figure F.7: Encoding the sign of v */
|
||||
if (v > 0) {
|
||||
arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
|
||||
st += 2; /* Table F.4: SP = S0 + 2 */
|
||||
entropy->dc_context[ci] = 4; /* small positive diff category */
|
||||
} else {
|
||||
v = -v;
|
||||
arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
|
||||
st += 3; /* Table F.4: SN = S0 + 3 */
|
||||
entropy->dc_context[ci] = 8; /* small negative diff category */
|
||||
}
|
||||
/* Figure F.8: Encoding the magnitude category of v */
|
||||
m = 0;
|
||||
if (v -= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m = 1;
|
||||
v2 = v;
|
||||
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
|
||||
while (v2 >>= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m <<= 1;
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
arith_encode(cinfo, st, 0);
|
||||
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
|
||||
if (m < (int) (((INT32) 1 << cinfo->arith_dc_L[tbl]) >> 1))
|
||||
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||
else if (m > (int) (((INT32) 1 << cinfo->arith_dc_U[tbl]) >> 1))
|
||||
entropy->dc_context[ci] += 8; /* large diff category */
|
||||
/* Figure F.9: Encoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
arith_encode(cinfo, st, (m & v) ? 1 : 0);
|
||||
}
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for AC initial scan (either spectral selection,
|
||||
* or first pass of successive approximation).
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
JBLOCKROW block;
|
||||
unsigned char *st;
|
||||
int tbl, k, ke;
|
||||
int v, v2, m;
|
||||
|
||||
/* Emit restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0) {
|
||||
emit_restart(cinfo, entropy->next_restart_num);
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num++;
|
||||
entropy->next_restart_num &= 7;
|
||||
}
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
/* Encode the MCU data block */
|
||||
block = MCU_data[0];
|
||||
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
|
||||
|
||||
/* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
|
||||
|
||||
/* Establish EOB (end-of-block) index */
|
||||
for (ke = cinfo->Se + 1; ke > 1; ke--)
|
||||
/* We must apply the point transform by Al. For AC coefficients this
|
||||
* is an integer division with rounding towards 0. To do this portably
|
||||
* in C, we shift after obtaining the absolute value.
|
||||
*/
|
||||
if ((v = (*block)[jpeg_natural_order[ke - 1]]) >= 0) {
|
||||
if (v >>= cinfo->Al) break;
|
||||
} else {
|
||||
v = -v;
|
||||
if (v >>= cinfo->Al) break;
|
||||
}
|
||||
|
||||
/* Figure F.5: Encode_AC_Coefficients */
|
||||
for (k = cinfo->Ss; k < ke; k++) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
arith_encode(cinfo, st, 0); /* EOB decision */
|
||||
entropy->ac_stats[tbl][245] = 0;
|
||||
for (;;) {
|
||||
if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
|
||||
if (v >>= cinfo->Al) {
|
||||
arith_encode(cinfo, st + 1, 1);
|
||||
arith_encode(cinfo, entropy->ac_stats[tbl] + 245, 0);
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
v = -v;
|
||||
if (v >>= cinfo->Al) {
|
||||
arith_encode(cinfo, st + 1, 1);
|
||||
arith_encode(cinfo, entropy->ac_stats[tbl] + 245, 1);
|
||||
break;
|
||||
}
|
||||
}
|
||||
arith_encode(cinfo, st + 1, 0); st += 3; k++;
|
||||
}
|
||||
st += 2;
|
||||
/* Figure F.8: Encoding the magnitude category of v */
|
||||
m = 0;
|
||||
if (v -= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m = 1;
|
||||
v2 = v;
|
||||
if (v2 >>= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m <<= 1;
|
||||
st = entropy->ac_stats[tbl] +
|
||||
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
|
||||
while (v2 >>= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m <<= 1;
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
arith_encode(cinfo, st, 0);
|
||||
/* Figure F.9: Encoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
arith_encode(cinfo, st, (m & v) ? 1 : 0);
|
||||
}
|
||||
/* Encode EOB decision only if k <= cinfo->Se */
|
||||
if (k <= cinfo->Se) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
arith_encode(cinfo, st, 1);
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for DC successive approximation refinement scan.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
unsigned char st[4];
|
||||
int Al, blkn;
|
||||
|
||||
/* Emit restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0) {
|
||||
emit_restart(cinfo, entropy->next_restart_num);
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num++;
|
||||
entropy->next_restart_num &= 7;
|
||||
}
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
Al = cinfo->Al;
|
||||
|
||||
/* Encode the MCU data blocks */
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
st[0] = 0; /* use fixed probability estimation */
|
||||
/* We simply emit the Al'th bit of the DC coefficient value. */
|
||||
arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for AC successive approximation refinement scan.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
JBLOCKROW block;
|
||||
unsigned char *st;
|
||||
int tbl, k, ke, kex;
|
||||
int v;
|
||||
|
||||
/* Emit restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0) {
|
||||
emit_restart(cinfo, entropy->next_restart_num);
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num++;
|
||||
entropy->next_restart_num &= 7;
|
||||
}
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
/* Encode the MCU data block */
|
||||
block = MCU_data[0];
|
||||
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
|
||||
|
||||
/* Section G.1.3.3: Encoding of AC coefficients */
|
||||
|
||||
/* Establish EOB (end-of-block) index */
|
||||
for (ke = cinfo->Se + 1; ke > 1; ke--)
|
||||
/* We must apply the point transform by Al. For AC coefficients this
|
||||
* is an integer division with rounding towards 0. To do this portably
|
||||
* in C, we shift after obtaining the absolute value.
|
||||
*/
|
||||
if ((v = (*block)[jpeg_natural_order[ke - 1]]) >= 0) {
|
||||
if (v >>= cinfo->Al) break;
|
||||
} else {
|
||||
v = -v;
|
||||
if (v >>= cinfo->Al) break;
|
||||
}
|
||||
|
||||
/* Establish EOBx (previous stage end-of-block) index */
|
||||
for (kex = ke; kex > 1; kex--)
|
||||
if ((v = (*block)[jpeg_natural_order[kex - 1]]) >= 0) {
|
||||
if (v >>= cinfo->Ah) break;
|
||||
} else {
|
||||
v = -v;
|
||||
if (v >>= cinfo->Ah) break;
|
||||
}
|
||||
|
||||
/* Figure G.10: Encode_AC_Coefficients_SA */
|
||||
for (k = cinfo->Ss; k < ke; k++) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
if (k >= kex)
|
||||
arith_encode(cinfo, st, 0); /* EOB decision */
|
||||
entropy->ac_stats[tbl][245] = 0;
|
||||
for (;;) {
|
||||
if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
|
||||
if (v >>= cinfo->Al) {
|
||||
if (v >> 1) /* previously nonzero coef */
|
||||
arith_encode(cinfo, st + 2, (v & 1));
|
||||
else { /* newly nonzero coef */
|
||||
arith_encode(cinfo, st + 1, 1);
|
||||
arith_encode(cinfo, entropy->ac_stats[tbl] + 245, 0);
|
||||
}
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
v = -v;
|
||||
if (v >>= cinfo->Al) {
|
||||
if (v >> 1) /* previously nonzero coef */
|
||||
arith_encode(cinfo, st + 2, (v & 1));
|
||||
else { /* newly nonzero coef */
|
||||
arith_encode(cinfo, st + 1, 1);
|
||||
arith_encode(cinfo, entropy->ac_stats[tbl] + 245, 1);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
arith_encode(cinfo, st + 1, 0); st += 3; k++;
|
||||
}
|
||||
}
|
||||
/* Encode EOB decision only if k <= cinfo->Se */
|
||||
if (k <= cinfo->Se) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
arith_encode(cinfo, st, 1);
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Encode and output one MCU's worth of arithmetic-compressed coefficients.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
jpeg_component_info * compptr;
|
||||
JBLOCKROW block;
|
||||
unsigned char *st;
|
||||
int blkn, ci, tbl, k, ke;
|
||||
int v, v2, m;
|
||||
|
||||
/* Emit restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0) {
|
||||
emit_restart(cinfo, entropy->next_restart_num);
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num++;
|
||||
entropy->next_restart_num &= 7;
|
||||
}
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
/* Encode the MCU data blocks */
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
block = MCU_data[blkn];
|
||||
ci = cinfo->MCU_membership[blkn];
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
|
||||
/* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
|
||||
|
||||
tbl = compptr->dc_tbl_no;
|
||||
|
||||
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
|
||||
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
|
||||
|
||||
/* Figure F.4: Encode_DC_DIFF */
|
||||
if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
|
||||
arith_encode(cinfo, st, 0);
|
||||
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||
} else {
|
||||
entropy->last_dc_val[ci] = (*block)[0];
|
||||
arith_encode(cinfo, st, 1);
|
||||
/* Figure F.6: Encoding nonzero value v */
|
||||
/* Figure F.7: Encoding the sign of v */
|
||||
if (v > 0) {
|
||||
arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
|
||||
st += 2; /* Table F.4: SP = S0 + 2 */
|
||||
entropy->dc_context[ci] = 4; /* small positive diff category */
|
||||
} else {
|
||||
v = -v;
|
||||
arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
|
||||
st += 3; /* Table F.4: SN = S0 + 3 */
|
||||
entropy->dc_context[ci] = 8; /* small negative diff category */
|
||||
}
|
||||
/* Figure F.8: Encoding the magnitude category of v */
|
||||
m = 0;
|
||||
if (v -= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m = 1;
|
||||
v2 = v;
|
||||
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
|
||||
while (v2 >>= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m <<= 1;
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
arith_encode(cinfo, st, 0);
|
||||
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
|
||||
if (m < (int) (((INT32) 1 << cinfo->arith_dc_L[tbl]) >> 1))
|
||||
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||
else if (m > (int) (((INT32) 1 << cinfo->arith_dc_U[tbl]) >> 1))
|
||||
entropy->dc_context[ci] += 8; /* large diff category */
|
||||
/* Figure F.9: Encoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
arith_encode(cinfo, st, (m & v) ? 1 : 0);
|
||||
}
|
||||
|
||||
/* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
|
||||
|
||||
tbl = compptr->ac_tbl_no;
|
||||
|
||||
/* Establish EOB (end-of-block) index */
|
||||
for (ke = DCTSIZE2; ke > 1; ke--)
|
||||
if ((*block)[jpeg_natural_order[ke - 1]]) break;
|
||||
|
||||
/* Figure F.5: Encode_AC_Coefficients */
|
||||
for (k = 1; k < ke; k++) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
arith_encode(cinfo, st, 0); /* EOB decision */
|
||||
while ((v = (*block)[jpeg_natural_order[k]]) == 0) {
|
||||
arith_encode(cinfo, st + 1, 0); st += 3; k++;
|
||||
}
|
||||
arith_encode(cinfo, st + 1, 1);
|
||||
/* Figure F.6: Encoding nonzero value v */
|
||||
/* Figure F.7: Encoding the sign of v */
|
||||
entropy->ac_stats[tbl][245] = 0;
|
||||
if (v > 0) {
|
||||
arith_encode(cinfo, entropy->ac_stats[tbl] + 245, 0);
|
||||
} else {
|
||||
v = -v;
|
||||
arith_encode(cinfo, entropy->ac_stats[tbl] + 245, 1);
|
||||
}
|
||||
st += 2;
|
||||
/* Figure F.8: Encoding the magnitude category of v */
|
||||
m = 0;
|
||||
if (v -= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m = 1;
|
||||
v2 = v;
|
||||
if (v2 >>= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m <<= 1;
|
||||
st = entropy->ac_stats[tbl] +
|
||||
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
|
||||
while (v2 >>= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m <<= 1;
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
arith_encode(cinfo, st, 0);
|
||||
/* Figure F.9: Encoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
arith_encode(cinfo, st, (m & v) ? 1 : 0);
|
||||
}
|
||||
/* Encode EOB decision only if k < DCTSIZE2 */
|
||||
if (k < DCTSIZE2) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
arith_encode(cinfo, st, 1);
|
||||
}
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for an arithmetic-compressed scan.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass (j_compress_ptr cinfo, boolean gather_statistics)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
int ci, tbl;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
if (gather_statistics)
|
||||
/* Make sure to avoid that in the master control logic!
|
||||
* We are fully adaptive here and need no extra
|
||||
* statistics gathering pass!
|
||||
*/
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
|
||||
/* We assume jcmaster.c already validated the progressive scan parameters. */
|
||||
|
||||
/* Select execution routines */
|
||||
if (cinfo->progressive_mode) {
|
||||
if (cinfo->Ah == 0) {
|
||||
if (cinfo->Ss == 0)
|
||||
entropy->pub.encode_mcu = encode_mcu_DC_first;
|
||||
else
|
||||
entropy->pub.encode_mcu = encode_mcu_AC_first;
|
||||
} else {
|
||||
if (cinfo->Ss == 0)
|
||||
entropy->pub.encode_mcu = encode_mcu_DC_refine;
|
||||
else
|
||||
entropy->pub.encode_mcu = encode_mcu_AC_refine;
|
||||
}
|
||||
} else
|
||||
entropy->pub.encode_mcu = encode_mcu;
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Allocate & initialize requested statistics areas */
|
||||
if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
|
||||
tbl = compptr->dc_tbl_no;
|
||||
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
|
||||
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
|
||||
if (entropy->dc_stats[tbl] == NULL)
|
||||
entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
|
||||
MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
|
||||
/* Initialize DC predictions to 0 */
|
||||
entropy->last_dc_val[ci] = 0;
|
||||
entropy->dc_context[ci] = 0;
|
||||
}
|
||||
if (cinfo->progressive_mode == 0 || cinfo->Ss) {
|
||||
tbl = compptr->ac_tbl_no;
|
||||
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
|
||||
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
|
||||
if (entropy->ac_stats[tbl] == NULL)
|
||||
entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
|
||||
MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
|
||||
#ifdef CALCULATE_SPECTRAL_CONDITIONING
|
||||
if (cinfo->progressive_mode)
|
||||
/* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
|
||||
cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
/* Initialize arithmetic encoding variables */
|
||||
entropy->c = 0;
|
||||
entropy->a = 0x10000L;
|
||||
entropy->sc = 0;
|
||||
entropy->zc = 0;
|
||||
entropy->ct = 11;
|
||||
entropy->buffer = -1; /* empty */
|
||||
|
||||
/* Initialize restart stuff */
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num = 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for arithmetic entropy encoding.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_arith_encoder (j_compress_ptr cinfo)
|
||||
{
|
||||
arith_entropy_ptr entropy;
|
||||
int i;
|
||||
|
||||
entropy = (arith_entropy_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(arith_entropy_encoder));
|
||||
cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
|
||||
entropy->pub.start_pass = start_pass;
|
||||
entropy->pub.finish_pass = finish_pass;
|
||||
|
||||
/* Mark tables unallocated */
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) {
|
||||
entropy->dc_stats[i] = NULL;
|
||||
entropy->ac_stats[i] = NULL;
|
||||
}
|
||||
}
|
6
jcinit.c
6
jcinit.c
@ -41,9 +41,9 @@ jinit_compress_master (j_compress_ptr cinfo)
|
||||
/* Forward DCT */
|
||||
jinit_forward_dct(cinfo);
|
||||
/* Entropy encoding: either Huffman or arithmetic coding. */
|
||||
if (cinfo->arith_code) {
|
||||
ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
|
||||
} else {
|
||||
if (cinfo->arith_code)
|
||||
jinit_arith_encoder(cinfo);
|
||||
else {
|
||||
if (cinfo->progressive_mode) {
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||
jinit_phuff_encoder(cinfo);
|
||||
|
@ -529,7 +529,10 @@ write_frame_header (j_compress_ptr cinfo)
|
||||
|
||||
/* Emit the proper SOF marker */
|
||||
if (cinfo->arith_code) {
|
||||
emit_sof(cinfo, M_SOF9); /* SOF code for arithmetic coding */
|
||||
if (cinfo->progressive_mode)
|
||||
emit_sof(cinfo, M_SOF10); /* SOF code for progressive arithmetic */
|
||||
else
|
||||
emit_sof(cinfo, M_SOF9); /* SOF code for sequential arithmetic */
|
||||
} else {
|
||||
if (cinfo->progressive_mode)
|
||||
emit_sof(cinfo, M_SOF2); /* SOF code for progressive Huffman */
|
||||
|
@ -433,7 +433,7 @@ prepare_for_pass (j_compress_ptr cinfo)
|
||||
/* Do Huffman optimization for a scan after the first one. */
|
||||
select_scan_parameters(cinfo);
|
||||
per_scan_setup(cinfo);
|
||||
if (cinfo->Ss != 0 || cinfo->Ah == 0 || cinfo->arith_code) {
|
||||
if (cinfo->Ss != 0 || cinfo->Ah == 0) {
|
||||
(*cinfo->entropy->start_pass) (cinfo, TRUE);
|
||||
(*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
|
||||
master->pub.call_pass_startup = FALSE;
|
||||
@ -567,7 +567,7 @@ jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only)
|
||||
cinfo->num_scans = 1;
|
||||
}
|
||||
|
||||
if (cinfo->progressive_mode) /* TEMPORARY HACK ??? */
|
||||
if (cinfo->progressive_mode && cinfo->arith_code == 0) /* TEMPORARY HACK ??? */
|
||||
cinfo->optimize_coding = TRUE; /* assume default tables no good for progressive mode */
|
||||
|
||||
/* Initialize my private state */
|
||||
|
@ -167,7 +167,7 @@ transencode_master_selection (j_compress_ptr cinfo,
|
||||
|
||||
/* Entropy encoding: either Huffman or arithmetic coding. */
|
||||
if (cinfo->arith_code) {
|
||||
ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
|
||||
jinit_arith_encoder(cinfo);
|
||||
} else {
|
||||
if (cinfo->progressive_mode) {
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||
|
762
jdarith.c
Normal file
762
jdarith.c
Normal file
@ -0,0 +1,762 @@
|
||||
/*
|
||||
* jdarith.c
|
||||
*
|
||||
* Copyright (C) 1997, Guido Vollbeding <guivol@esc.de>.
|
||||
* This file is NOT part of the Independent JPEG Group's software
|
||||
* for legal reasons.
|
||||
* See the accompanying README file for conditions of distribution and use.
|
||||
*
|
||||
* This file contains portable arithmetic entropy decoding routines for JPEG
|
||||
* (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
|
||||
*
|
||||
* Both sequential and progressive modes are supported in this single module.
|
||||
*
|
||||
* Suspension is not currently supported in this module.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Expanded entropy decoder object for arithmetic decoding. */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_entropy_decoder pub; /* public fields */
|
||||
|
||||
INT32 c; /* C register, base of coding interval + input bit buffer */
|
||||
INT32 a; /* A register, normalized size of coding interval */
|
||||
int ct; /* bit shift counter, # of bits left in bit buffer part of C */
|
||||
/* init: ct = -16 */
|
||||
/* run: ct = 0..7 */
|
||||
/* error: ct = -1 */
|
||||
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
||||
int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
|
||||
|
||||
unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
||||
|
||||
/* Pointers to statistics areas (these workspaces have image lifespan) */
|
||||
unsigned char * dc_stats[NUM_ARITH_TBLS];
|
||||
unsigned char * ac_stats[NUM_ARITH_TBLS];
|
||||
} arith_entropy_decoder;
|
||||
|
||||
typedef arith_entropy_decoder * arith_entropy_ptr;
|
||||
|
||||
/* The following two definitions specify the allocation chunk size
|
||||
* for the statistics area.
|
||||
* According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
|
||||
* 49 statistics bins for DC, and 245 statistics bins for AC coding.
|
||||
* Note that we use one additional AC bin for codings with fixed
|
||||
* probability (0.5), thus the minimum number for AC is 246.
|
||||
*
|
||||
* We use a compact representation with 1 byte per statistics bin,
|
||||
* thus the numbers directly represent byte sizes.
|
||||
* This 1 byte per statistics bin contains the meaning of the MPS
|
||||
* (more probable symbol) in the highest bit (mask 0x80), and the
|
||||
* index into the probability estimation state machine table
|
||||
* in the lower bits (mask 0x7F).
|
||||
*/
|
||||
|
||||
#define DC_STAT_BINS 64
|
||||
#define AC_STAT_BINS 256
|
||||
|
||||
|
||||
LOCAL(int)
|
||||
get_byte (j_decompress_ptr cinfo)
|
||||
/* Read next input byte; we do not support suspension in this module. */
|
||||
{
|
||||
struct jpeg_source_mgr * src = cinfo->src;
|
||||
|
||||
if (src->bytes_in_buffer == 0)
|
||||
if (! (*src->fill_input_buffer) (cinfo))
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
src->bytes_in_buffer--;
|
||||
return GETJOCTET(*src->next_input_byte++);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The core arithmetic decoding routine (common in JPEG and JBIG).
|
||||
* This needs to go as fast as possible.
|
||||
* Machine-dependent optimization facilities
|
||||
* are not utilized in this portable implementation.
|
||||
* However, this code should be fairly efficient and
|
||||
* may be a good base for further optimizations anyway.
|
||||
*
|
||||
* Return value is 0 or 1 (binary decision).
|
||||
*
|
||||
* Note: I've changed the handling of the code base & bit
|
||||
* buffer register C compared to other implementations
|
||||
* based on the standards layout & procedures.
|
||||
* While it also contains both the actual base of the
|
||||
* coding interval (16 bits) and the next-bits buffer,
|
||||
* the cut-point between these two parts is floating
|
||||
* (instead of fixed) with the bit shift counter CT.
|
||||
* Thus, we also need only one (variable instead of
|
||||
* fixed size) shift for the LPS/MPS decision, and
|
||||
* we can get away with any renormalization update
|
||||
* of C (except for new data insertion, of course).
|
||||
*
|
||||
* I've also introduced a new scheme for accessing
|
||||
* the probability estimation state machine table,
|
||||
* derived from Markus Kuhn's JBIG implementation.
|
||||
*/
|
||||
|
||||
LOCAL(int)
|
||||
arith_decode (j_decompress_ptr cinfo, unsigned char *st)
|
||||
{
|
||||
extern const INT32 jaritab[];
|
||||
register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
|
||||
register unsigned char nl, nm;
|
||||
register INT32 qe, temp;
|
||||
register int sv, data;
|
||||
|
||||
/* Renormalization & data input per section D.2.6 */
|
||||
while (e->a < 0x8000L) {
|
||||
if (--e->ct < 0) {
|
||||
/* Need to fetch next data byte */
|
||||
if (cinfo->unread_marker)
|
||||
data = 0; /* stuff zero data */
|
||||
else {
|
||||
data = get_byte(cinfo); /* read next input byte */
|
||||
if (data == 0xFF) { /* zero stuff or marker code */
|
||||
do data = get_byte(cinfo);
|
||||
while (data == 0xFF); /* swallow extra 0xFF bytes */
|
||||
if (data == 0)
|
||||
data = 0xFF; /* discard stuffed zero byte */
|
||||
else {
|
||||
/* Note: Different from the Huffman decoder, hitting
|
||||
* a marker while processing the compressed data
|
||||
* segment is legal in arithmetic coding.
|
||||
* The convention is to supply zero data
|
||||
* then until decoding is complete.
|
||||
*/
|
||||
cinfo->unread_marker = data;
|
||||
data = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
e->c = (e->c << 8) | data; /* insert data into C register */
|
||||
if ((e->ct += 8) < 0) /* update bit shift counter */
|
||||
/* Need more initial bytes */
|
||||
if (++e->ct == 0)
|
||||
/* Got 2 initial bytes -> re-init A and exit loop */
|
||||
e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
|
||||
}
|
||||
e->a <<= 1;
|
||||
}
|
||||
|
||||
/* Fetch values from our compact representation of Table D.2:
|
||||
* Qe values and probability estimation state machine
|
||||
*/
|
||||
sv = *st;
|
||||
qe = jaritab[sv & 0x7F]; /* => Qe_Value */
|
||||
nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
|
||||
nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
|
||||
|
||||
/* Decode & estimation procedures per sections D.2.4 & D.2.5 */
|
||||
temp = e->a - qe;
|
||||
e->a = temp;
|
||||
temp <<= e->ct;
|
||||
if (e->c >= temp) {
|
||||
e->c -= temp;
|
||||
/* Conditional LPS (less probable symbol) exchange */
|
||||
if (e->a < qe) {
|
||||
e->a = qe;
|
||||
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
|
||||
} else {
|
||||
e->a = qe;
|
||||
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
|
||||
sv ^= 0x80; /* Exchange LPS/MPS */
|
||||
}
|
||||
} else if (e->a < 0x8000L) {
|
||||
/* Conditional MPS (more probable symbol) exchange */
|
||||
if (e->a < qe) {
|
||||
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
|
||||
sv ^= 0x80; /* Exchange LPS/MPS */
|
||||
} else {
|
||||
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
|
||||
}
|
||||
}
|
||||
|
||||
return sv >> 7;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Check for a restart marker & resynchronize decoder.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
process_restart (j_decompress_ptr cinfo)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
int ci;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
/* Advance past the RSTn marker */
|
||||
if (! (*cinfo->marker->read_restart_marker) (cinfo))
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Re-initialize statistics areas */
|
||||
if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
|
||||
MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
|
||||
/* Reset DC predictions to 0 */
|
||||
entropy->last_dc_val[ci] = 0;
|
||||
entropy->dc_context[ci] = 0;
|
||||
}
|
||||
if (cinfo->progressive_mode == 0 || cinfo->Ss) {
|
||||
MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
|
||||
}
|
||||
}
|
||||
|
||||
/* Reset arithmetic decoding variables */
|
||||
entropy->c = 0;
|
||||
entropy->a = 0;
|
||||
entropy->ct = -16; /* force reading 2 initial bytes to fill C */
|
||||
|
||||
/* Reset restart counter */
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Arithmetic MCU decoding.
|
||||
* Each of these routines decodes and returns one MCU's worth of
|
||||
* arithmetic-compressed coefficients.
|
||||
* The coefficients are reordered from zigzag order into natural array order,
|
||||
* but are not dequantized.
|
||||
*
|
||||
* The i'th block of the MCU is stored into the block pointed to by
|
||||
* MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
|
||||
*/
|
||||
|
||||
/*
|
||||
* MCU decoding for DC initial scan (either spectral selection,
|
||||
* or first pass of successive approximation).
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
JBLOCKROW block;
|
||||
unsigned char *st;
|
||||
int blkn, ci, tbl, sign;
|
||||
int v, m;
|
||||
|
||||
/* Process restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
process_restart(cinfo);
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
if (entropy->ct == -1) return TRUE; /* if error do nothing */
|
||||
|
||||
/* Outer loop handles each block in the MCU */
|
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
block = MCU_data[blkn];
|
||||
ci = cinfo->MCU_membership[blkn];
|
||||
tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
|
||||
|
||||
/* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
|
||||
|
||||
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
|
||||
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
|
||||
|
||||
/* Figure F.19: Decode_DC_DIFF */
|
||||
if (arith_decode(cinfo, st) == 0)
|
||||
entropy->dc_context[ci] = 0;
|
||||
else {
|
||||
/* Figure F.21: Decoding nonzero value v */
|
||||
/* Figure F.22: Decoding the sign of v */
|
||||
sign = arith_decode(cinfo, st + 1);
|
||||
st += 2; st += sign;
|
||||
/* Figure F.23: Decoding the magnitude category of v */
|
||||
if ((m = arith_decode(cinfo, st)) != 0) {
|
||||
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
|
||||
while (arith_decode(cinfo, st)) {
|
||||
if ((m <<= 1) == 0x8000) {
|
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||
entropy->ct = -1; /* magnitude overflow */
|
||||
return TRUE;
|
||||
}
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
|
||||
if (m < (int) (((INT32) 1 << cinfo->arith_dc_L[tbl]) >> 1))
|
||||
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||
else if (m > (int) (((INT32) 1 << cinfo->arith_dc_U[tbl]) >> 1))
|
||||
entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
|
||||
else
|
||||
entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */
|
||||
v = m;
|
||||
/* Figure F.24: Decoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
if (arith_decode(cinfo, st)) v |= m;
|
||||
v += 1; if (sign) v = -v;
|
||||
entropy->last_dc_val[ci] += v;
|
||||
}
|
||||
|
||||
/* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
|
||||
(*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al);
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU decoding for AC initial scan (either spectral selection,
|
||||
* or first pass of successive approximation).
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
JBLOCKROW block;
|
||||
unsigned char *st;
|
||||
int tbl, sign, k;
|
||||
int v, m;
|
||||
|
||||
/* Process restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
process_restart(cinfo);
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
if (entropy->ct == -1) return TRUE; /* if error do nothing */
|
||||
|
||||
/* There is always only one block per MCU */
|
||||
block = MCU_data[0];
|
||||
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
|
||||
|
||||
/* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
|
||||
|
||||
/* Figure F.20: Decode_AC_coefficients */
|
||||
for (k = cinfo->Ss; k <= cinfo->Se; k++) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
if (arith_decode(cinfo, st)) break; /* EOB flag */
|
||||
while (arith_decode(cinfo, st + 1) == 0) {
|
||||
st += 3; k++;
|
||||
if (k > cinfo->Se) {
|
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||
entropy->ct = -1; /* spectral overflow */
|
||||
return TRUE;
|
||||
}
|
||||
}
|
||||
/* Figure F.21: Decoding nonzero value v */
|
||||
/* Figure F.22: Decoding the sign of v */
|
||||
entropy->ac_stats[tbl][245] = 0;
|
||||
sign = arith_decode(cinfo, entropy->ac_stats[tbl] + 245);
|
||||
st += 2;
|
||||
/* Figure F.23: Decoding the magnitude category of v */
|
||||
if ((m = arith_decode(cinfo, st)) != 0) {
|
||||
if (arith_decode(cinfo, st)) {
|
||||
m <<= 1;
|
||||
st = entropy->ac_stats[tbl] +
|
||||
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
|
||||
while (arith_decode(cinfo, st)) {
|
||||
if ((m <<= 1) == 0x8000) {
|
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||
entropy->ct = -1; /* magnitude overflow */
|
||||
return TRUE;
|
||||
}
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
v = m;
|
||||
/* Figure F.24: Decoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
if (arith_decode(cinfo, st)) v |= m;
|
||||
v += 1; if (sign) v = -v;
|
||||
/* Scale and output coefficient in natural (dezigzagged) order */
|
||||
(*block)[jpeg_natural_order[k]] = (JCOEF) (v << cinfo->Al);
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU decoding for DC successive approximation refinement scan.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
unsigned char st[4];
|
||||
int p1, blkn;
|
||||
|
||||
/* Process restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
process_restart(cinfo);
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
|
||||
|
||||
/* Outer loop handles each block in the MCU */
|
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
st[0] = 0; /* use fixed probability estimation */
|
||||
/* Encoded data is simply the next bit of the two's-complement DC value */
|
||||
if (arith_decode(cinfo, st))
|
||||
MCU_data[blkn][0][0] |= p1;
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU decoding for AC successive approximation refinement scan.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
JBLOCKROW block;
|
||||
JCOEFPTR thiscoef;
|
||||
unsigned char *st;
|
||||
int tbl, k, kex;
|
||||
int p1, m1;
|
||||
|
||||
/* Process restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
process_restart(cinfo);
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
if (entropy->ct == -1) return TRUE; /* if error do nothing */
|
||||
|
||||
/* There is always only one block per MCU */
|
||||
block = MCU_data[0];
|
||||
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
|
||||
|
||||
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
|
||||
m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */
|
||||
|
||||
/* Establish EOBx (previous stage end-of-block) index */
|
||||
for (kex = cinfo->Se + 1; kex > 1; kex--)
|
||||
if ((*block)[jpeg_natural_order[kex - 1]]) break;
|
||||
|
||||
for (k = cinfo->Ss; k <= cinfo->Se; k++) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
if (k >= kex)
|
||||
if (arith_decode(cinfo, st)) break; /* EOB flag */
|
||||
for (;;) {
|
||||
thiscoef = *block + jpeg_natural_order[k];
|
||||
if (*thiscoef) { /* previously nonzero coef */
|
||||
if (arith_decode(cinfo, st + 2))
|
||||
if (*thiscoef < 0)
|
||||
*thiscoef += m1;
|
||||
else
|
||||
*thiscoef += p1;
|
||||
break;
|
||||
}
|
||||
if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */
|
||||
entropy->ac_stats[tbl][245] = 0;
|
||||
if (arith_decode(cinfo, entropy->ac_stats[tbl] + 245))
|
||||
*thiscoef = m1;
|
||||
else
|
||||
*thiscoef = p1;
|
||||
break;
|
||||
}
|
||||
st += 3; k++;
|
||||
if (k > cinfo->Se) {
|
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||
entropy->ct = -1; /* spectral overflow */
|
||||
return TRUE;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Decode one MCU's worth of arithmetic-compressed coefficients.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
jpeg_component_info * compptr;
|
||||
JBLOCKROW block;
|
||||
unsigned char *st;
|
||||
int blkn, ci, tbl, sign, k;
|
||||
int v, m;
|
||||
|
||||
/* Process restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
process_restart(cinfo);
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
if (entropy->ct == -1) return TRUE; /* if error do nothing */
|
||||
|
||||
/* Outer loop handles each block in the MCU */
|
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
block = MCU_data[blkn];
|
||||
ci = cinfo->MCU_membership[blkn];
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
|
||||
/* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
|
||||
|
||||
tbl = compptr->dc_tbl_no;
|
||||
|
||||
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
|
||||
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
|
||||
|
||||
/* Figure F.19: Decode_DC_DIFF */
|
||||
if (arith_decode(cinfo, st) == 0)
|
||||
entropy->dc_context[ci] = 0;
|
||||
else {
|
||||
/* Figure F.21: Decoding nonzero value v */
|
||||
/* Figure F.22: Decoding the sign of v */
|
||||
sign = arith_decode(cinfo, st + 1);
|
||||
st += 2; st += sign;
|
||||
/* Figure F.23: Decoding the magnitude category of v */
|
||||
if ((m = arith_decode(cinfo, st)) != 0) {
|
||||
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
|
||||
while (arith_decode(cinfo, st)) {
|
||||
if ((m <<= 1) == 0x8000) {
|
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||
entropy->ct = -1; /* magnitude overflow */
|
||||
return TRUE;
|
||||
}
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
|
||||
if (m < (int) (((INT32) 1 << cinfo->arith_dc_L[tbl]) >> 1))
|
||||
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||
else if (m > (int) (((INT32) 1 << cinfo->arith_dc_U[tbl]) >> 1))
|
||||
entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
|
||||
else
|
||||
entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */
|
||||
v = m;
|
||||
/* Figure F.24: Decoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
if (arith_decode(cinfo, st)) v |= m;
|
||||
v += 1; if (sign) v = -v;
|
||||
entropy->last_dc_val[ci] += v;
|
||||
}
|
||||
|
||||
(*block)[0] = (JCOEF) entropy->last_dc_val[ci];
|
||||
|
||||
/* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
|
||||
|
||||
tbl = compptr->ac_tbl_no;
|
||||
|
||||
/* Figure F.20: Decode_AC_coefficients */
|
||||
for (k = 1; k < DCTSIZE2; k++) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
if (arith_decode(cinfo, st)) break; /* EOB flag */
|
||||
while (arith_decode(cinfo, st + 1) == 0) {
|
||||
st += 3; k++;
|
||||
if (k >= DCTSIZE2) {
|
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||
entropy->ct = -1; /* spectral overflow */
|
||||
return TRUE;
|
||||
}
|
||||
}
|
||||
/* Figure F.21: Decoding nonzero value v */
|
||||
/* Figure F.22: Decoding the sign of v */
|
||||
entropy->ac_stats[tbl][245] = 0;
|
||||
sign = arith_decode(cinfo, entropy->ac_stats[tbl] + 245);
|
||||
st += 2;
|
||||
/* Figure F.23: Decoding the magnitude category of v */
|
||||
if ((m = arith_decode(cinfo, st)) != 0) {
|
||||
if (arith_decode(cinfo, st)) {
|
||||
m <<= 1;
|
||||
st = entropy->ac_stats[tbl] +
|
||||
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
|
||||
while (arith_decode(cinfo, st)) {
|
||||
if ((m <<= 1) == 0x8000) {
|
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||
entropy->ct = -1; /* magnitude overflow */
|
||||
return TRUE;
|
||||
}
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
v = m;
|
||||
/* Figure F.24: Decoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
if (arith_decode(cinfo, st)) v |= m;
|
||||
v += 1; if (sign) v = -v;
|
||||
(*block)[jpeg_natural_order[k]] = (JCOEF) v;
|
||||
}
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for an arithmetic-compressed scan.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass (j_decompress_ptr cinfo)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
int ci, tbl;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
if (cinfo->progressive_mode) {
|
||||
/* Validate progressive scan parameters */
|
||||
if (cinfo->Ss == 0) {
|
||||
if (cinfo->Se != 0)
|
||||
goto bad;
|
||||
} else {
|
||||
/* need not check Ss/Se < 0 since they came from unsigned bytes */
|
||||
if (cinfo->Se < cinfo->Ss || cinfo->Se >= DCTSIZE2)
|
||||
goto bad;
|
||||
/* AC scans may have only one component */
|
||||
if (cinfo->comps_in_scan != 1)
|
||||
goto bad;
|
||||
}
|
||||
if (cinfo->Ah != 0) {
|
||||
/* Successive approximation refinement scan: must have Al = Ah-1. */
|
||||
if (cinfo->Ah-1 != cinfo->Al)
|
||||
goto bad;
|
||||
}
|
||||
if (cinfo->Al > 13) { /* need not check for < 0 */
|
||||
bad:
|
||||
ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
|
||||
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
|
||||
}
|
||||
/* Update progression status, and verify that scan order is legal.
|
||||
* Note that inter-scan inconsistencies are treated as warnings
|
||||
* not fatal errors ... not clear if this is right way to behave.
|
||||
*/
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
|
||||
int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
|
||||
if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
|
||||
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
|
||||
for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
|
||||
int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
|
||||
if (cinfo->Ah != expected)
|
||||
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
|
||||
coef_bit_ptr[coefi] = cinfo->Al;
|
||||
}
|
||||
}
|
||||
/* Select MCU decoding routine */
|
||||
if (cinfo->Ah == 0) {
|
||||
if (cinfo->Ss == 0)
|
||||
entropy->pub.decode_mcu = decode_mcu_DC_first;
|
||||
else
|
||||
entropy->pub.decode_mcu = decode_mcu_AC_first;
|
||||
} else {
|
||||
if (cinfo->Ss == 0)
|
||||
entropy->pub.decode_mcu = decode_mcu_DC_refine;
|
||||
else
|
||||
entropy->pub.decode_mcu = decode_mcu_AC_refine;
|
||||
}
|
||||
} else {
|
||||
/* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
|
||||
* This ought to be an error condition, but we make it a warning because
|
||||
* there are some baseline files out there with all zeroes in these bytes.
|
||||
*/
|
||||
if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
|
||||
cinfo->Ah != 0 || cinfo->Al != 0)
|
||||
WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
|
||||
/* Select MCU decoding routine */
|
||||
entropy->pub.decode_mcu = decode_mcu;
|
||||
}
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Allocate & initialize requested statistics areas */
|
||||
if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
|
||||
tbl = compptr->dc_tbl_no;
|
||||
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
|
||||
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
|
||||
if (entropy->dc_stats[tbl] == NULL)
|
||||
entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
|
||||
MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
|
||||
/* Initialize DC predictions to 0 */
|
||||
entropy->last_dc_val[ci] = 0;
|
||||
entropy->dc_context[ci] = 0;
|
||||
}
|
||||
if (cinfo->progressive_mode == 0 || cinfo->Ss) {
|
||||
tbl = compptr->ac_tbl_no;
|
||||
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
|
||||
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
|
||||
if (entropy->ac_stats[tbl] == NULL)
|
||||
entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
|
||||
MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
|
||||
}
|
||||
}
|
||||
|
||||
/* Initialize arithmetic decoding variables */
|
||||
entropy->c = 0;
|
||||
entropy->a = 0;
|
||||
entropy->ct = -16; /* force reading 2 initial bytes to fill C */
|
||||
|
||||
/* Initialize restart counter */
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for arithmetic entropy decoding.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_arith_decoder (j_decompress_ptr cinfo)
|
||||
{
|
||||
arith_entropy_ptr entropy;
|
||||
int i;
|
||||
|
||||
entropy = (arith_entropy_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(arith_entropy_decoder));
|
||||
cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
|
||||
entropy->pub.start_pass = start_pass;
|
||||
|
||||
/* Mark tables unallocated */
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) {
|
||||
entropy->dc_stats[i] = NULL;
|
||||
entropy->ac_stats[i] = NULL;
|
||||
}
|
||||
|
||||
if (cinfo->progressive_mode) {
|
||||
/* Create progression status table */
|
||||
int *coef_bit_ptr, ci;
|
||||
cinfo->coef_bits = (int (*)[DCTSIZE2])
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
cinfo->num_components*DCTSIZE2*SIZEOF(int));
|
||||
coef_bit_ptr = & cinfo->coef_bits[0][0];
|
||||
for (ci = 0; ci < cinfo->num_components; ci++)
|
||||
for (i = 0; i < DCTSIZE2; i++)
|
||||
*coef_bit_ptr++ = -1;
|
||||
}
|
||||
}
|
@ -373,7 +373,7 @@ master_selection (j_decompress_ptr cinfo)
|
||||
jinit_inverse_dct(cinfo);
|
||||
/* Entropy decoding: either Huffman or arithmetic coding. */
|
||||
if (cinfo->arith_code) {
|
||||
ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
|
||||
jinit_arith_decoder(cinfo);
|
||||
} else {
|
||||
if (cinfo->progressive_mode) {
|
||||
#ifdef D_PROGRESSIVE_SUPPORTED
|
||||
|
@ -100,9 +100,9 @@ transdecode_master_selection (j_decompress_ptr cinfo)
|
||||
cinfo->buffered_image = TRUE;
|
||||
|
||||
/* Entropy decoding: either Huffman or arithmetic coding. */
|
||||
if (cinfo->arith_code) {
|
||||
ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
|
||||
} else {
|
||||
if (cinfo->arith_code)
|
||||
jinit_arith_decoder(cinfo);
|
||||
else {
|
||||
if (cinfo->progressive_mode) {
|
||||
#ifdef D_PROGRESSIVE_SUPPORTED
|
||||
jinit_phuff_decoder(cinfo);
|
||||
|
2
jerror.h
2
jerror.h
@ -93,6 +93,7 @@ JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data")
|
||||
JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change")
|
||||
JMESSAGE(JERR_NOTIMPL, "Not implemented yet")
|
||||
JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time")
|
||||
JMESSAGE(JERR_NO_ARITH_TABLE, "Arithmetic table 0x%02x was not defined")
|
||||
JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported")
|
||||
JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined")
|
||||
JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image")
|
||||
@ -170,6 +171,7 @@ JMESSAGE(JTRC_UNKNOWN_IDS,
|
||||
JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u")
|
||||
JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u")
|
||||
JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d")
|
||||
JMESSAGE(JWRN_ARITH_BAD_CODE, "Corrupt JPEG data: bad arithmetic code")
|
||||
JMESSAGE(JWRN_BOGUS_PROGRESSION,
|
||||
"Inconsistent progression sequence for component %d coefficient %d")
|
||||
JMESSAGE(JWRN_EXTRANEOUS_DATA,
|
||||
|
@ -266,7 +266,7 @@ typedef int boolean;
|
||||
|
||||
/* Encoder capability options: */
|
||||
|
||||
#undef C_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
|
||||
#define C_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
|
||||
#define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
|
||||
#define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
|
||||
#define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */
|
||||
@ -282,7 +282,7 @@ typedef int boolean;
|
||||
|
||||
/* Decoder capability options: */
|
||||
|
||||
#undef D_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
|
||||
#define D_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
|
||||
#define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
|
||||
#define D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
|
||||
#define SAVE_MARKERS_SUPPORTED /* jpeg_save_markers() needed? */
|
||||
|
@ -345,6 +345,7 @@ EXTERN(void) jinit_downsampler JPP((j_compress_ptr cinfo));
|
||||
EXTERN(void) jinit_forward_dct JPP((j_compress_ptr cinfo));
|
||||
EXTERN(void) jinit_huff_encoder JPP((j_compress_ptr cinfo));
|
||||
EXTERN(void) jinit_phuff_encoder JPP((j_compress_ptr cinfo));
|
||||
EXTERN(void) jinit_arith_encoder JPP((j_compress_ptr cinfo));
|
||||
EXTERN(void) jinit_marker_writer JPP((j_compress_ptr cinfo));
|
||||
/* Decompression module initialization routines */
|
||||
EXTERN(void) jinit_master_decompress JPP((j_decompress_ptr cinfo));
|
||||
@ -358,6 +359,7 @@ EXTERN(void) jinit_input_controller JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jinit_marker_reader JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jinit_huff_decoder JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jinit_phuff_decoder JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jinit_arith_decoder JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jinit_inverse_dct JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jinit_upsampler JPP((j_decompress_ptr cinfo));
|
||||
EXTERN(void) jinit_color_deconverter JPP((j_decompress_ptr cinfo));
|
||||
|
11
makefile.cfg
11
makefile.cfg
@ -80,7 +80,7 @@ LIBSOURCES= jcapimin.c jcapistd.c jccoefct.c jccolor.c jcdctmgr.c jchuff.c \
|
||||
jdinput.c jdmainct.c jdmarker.c jdmaster.c jdmerge.c jdphuff.c \
|
||||
jdpostct.c jdsample.c jdtrans.c jerror.c jfdctflt.c jfdctfst.c \
|
||||
jfdctint.c jidctflt.c jidctfst.c jidctint.c jidctred.c jquant1.c \
|
||||
jquant2.c jutils.c jmemmgr.c
|
||||
jquant2.c jutils.c jmemmgr.c jaricom.c jcarith.c jdarith.c
|
||||
# memmgr back ends: compile only one of these into a working library
|
||||
SYSDEPSOURCES= jmemansi.c jmemname.c jmemnobs.c jmemdos.c jmemmac.c
|
||||
# source files: cjpeg/djpeg/jpegtran applications, also rdjpgcom/wrjpgcom
|
||||
@ -110,19 +110,19 @@ TESTFILES= testorig.jpg testimg.ppm testimg.bmp testimg.jpg testprog.jpg \
|
||||
DISTFILES= $(DOCS) $(MKFILES) $(CONFIGFILES) $(SOURCES) $(INCLUDES) \
|
||||
$(CONFIGUREFILES) $(OTHERFILES) $(TESTFILES)
|
||||
# library object files common to compression and decompression
|
||||
COMOBJECTS= jcomapi.$(O) jutils.$(O) jerror.$(O) jmemmgr.$(O) $(SYSDEPMEM)
|
||||
COMOBJECTS= jcomapi.$(O) jutils.$(O) jerror.$(O) jmemmgr.$(O) jaricom.$(O) $(SYSDEPMEM)
|
||||
# compression library object files
|
||||
CLIBOBJECTS= jcapimin.$(O) jcapistd.$(O) jctrans.$(O) jcparam.$(O) \
|
||||
jdatadst.$(O) jcinit.$(O) jcmaster.$(O) jcmarker.$(O) jcmainct.$(O) \
|
||||
jcprepct.$(O) jccoefct.$(O) jccolor.$(O) jcsample.$(O) jchuff.$(O) \
|
||||
jcphuff.$(O) jcdctmgr.$(O) jfdctfst.$(O) jfdctflt.$(O) \
|
||||
jfdctint.$(O)
|
||||
jfdctint.$(O) jcarith.$(O)
|
||||
# decompression library object files
|
||||
DLIBOBJECTS= jdapimin.$(O) jdapistd.$(O) jdtrans.$(O) jdatasrc.$(O) \
|
||||
jdmaster.$(O) jdinput.$(O) jdmarker.$(O) jdhuff.$(O) jdphuff.$(O) \
|
||||
jdmainct.$(O) jdcoefct.$(O) jdpostct.$(O) jddctmgr.$(O) \
|
||||
jidctfst.$(O) jidctflt.$(O) jidctint.$(O) jidctred.$(O) \
|
||||
jdsample.$(O) jdcolor.$(O) jquant1.$(O) jquant2.$(O) jdmerge.$(O)
|
||||
jdsample.$(O) jdcolor.$(O) jquant1.$(O) jquant2.$(O) jdmerge.$(O) jdarith.$(O)
|
||||
# These objectfiles are included in libjpeg.a
|
||||
LIBOBJECTS= $(CLIBOBJECTS) $(DLIBOBJECTS) $(COMOBJECTS)
|
||||
# object files for sample applications (excluding library files)
|
||||
@ -317,3 +317,6 @@ rdbmp.$(O): rdbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
|
||||
wrbmp.$(O): wrbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
|
||||
rdrle.$(O): rdrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
|
||||
wrrle.$(O): wrrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
|
||||
jcarith.$(O): jcarith.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
|
||||
jdarith.$(O): jdarith.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
|
||||
jaricom.$(O): jaricom.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
|
||||
|
Loading…
Reference in New Issue
Block a user